1. Evaluate $\int \frac{6 x+7}{\sqrt{9-x^{2}}} d x$.

$$
\begin{aligned}
\int \frac{6 x+7}{\sqrt{9-x^{2}}} d x & =\int\left(\frac{6 x}{\sqrt{9-x^{2}}}+\frac{7}{\sqrt{9-x^{2}}}\right) d x \\
& =-6 \sqrt{9-x^{2}}+7 \arcsin (x / 3)+C
\end{aligned}
$$

[mental guess and check, basic formula]
2. Evaluate $\int \frac{2 x-1}{x^{2}+6 x+13} d x$.

$$
\begin{aligned}
\int \frac{2 x-1}{x^{2}+6 x+13} d x & =\int \frac{2 x-1}{(x+3)^{2}+4} d x \\
& \left.=\int \frac{2(u-3)-1}{u^{2}+4} d u \quad \begin{array}{r}
\text { complete the square } \\
\text { let } u=x+3 \\
\text { then } d u
\end{array}\right) d x \\
& =\int\left(\frac{2 u}{u^{2}+4}-\frac{7}{u^{2}+4}\right) d u \\
& =\ln \left(u^{2}+4\right)-\frac{7}{2} \arctan \left(\frac{u}{2}\right)+\frac{7}{2} \\
& =\ln \left(x^{2}+6 x+13\right)-\frac{7}{2} \arctan \left(\frac{x+3}{2}\right)+C
\end{aligned}
$$

3. Evaluate $\int \frac{4 x-3}{\sqrt{33+8 x-x^{2}}} d x$.

$$
\left\{\begin{array}{l}
-\left(x^{2}-8 x+16\right)+16+33 \\
=-(x-4)^{2}+49
\end{array}\right\}
$$

$$
\begin{aligned}
& \int \frac{4 x-3}{\sqrt{33+8 x-x^{2}}} d x=\int \frac{4 x-3}{\sqrt{49-(x-4)^{2}}} d x \\
& =\int \frac{4(u+4)-3}{\sqrt{49-u^{2}}} d u \\
& \text { Let } u=x-4 \\
& \text { then } x=u+4 \\
& d x=d u \\
& =\int\left(\frac{4 u}{\sqrt{49-u^{2}}}+\frac{13}{\sqrt{49-u^{2}}}\right) d u \\
& =-4 \sqrt{49-u^{2}}+13 \arcsin \left(\frac{u}{7}\right)+C \\
& =-4 \sqrt{33+8 x-x^{2}}+1 \beta \arcsin \left(\frac{x-4}{7}\right)+C .
\end{aligned}
$$

4. Evaluate $\int \frac{6 x^{3}+14 x+7}{x^{2}+9} d x$. use long division

$$
\begin{aligned}
& {\left[6 x+\frac{-40 x+7}{x^{2}+9}\right]} \\
& x ^ { 2 } + 9 \longdiv { 6 x } \longdiv { 6 x ^ { 3 } + 0 x ^ { 2 } + 1 4 x + 7 } \\
& \frac{6 x^{3}+54 x}{-40 x+7} \\
& \int \frac{6 x^{3}+14 x+7}{x^{2}+9} d x=\int\left(6 x-\frac{40 x}{x^{2}+9}+\frac{7}{x^{2}+9}\right) d x \\
& =3 x^{2}-20 \ln \left(x^{2}+9\right)+\frac{7}{3} \arctan \left(\frac{x}{3}\right)+C .
\end{aligned}
$$

