
A Brief Summary of Math 225

You should know about curves in parametric form and how to parameterize simple curves such as circles.

Given a curve in this form, you should be able to find its tangent lines, the area beneath it, and its arc

length. You should be familiar with polar coordinates and the relationship between (x, y) coordinates and

(r, θ) coordinates. Know how to graph simple curves in polar coordinates and how to find the area of regions

bounded by polar curves. Other than knowing what the basic conic sections are (parabolas, circles,

ellipses, and hyperbolas) we do not focus on any of their special forms or properties.

You should be able to work with vectors in R2 and R3, including how to represent them, perform the

operations of addition and scalar multiplication, and find their magnitude. The dot product of two vectors

is useful for finding the angle between two vectors (and thus determining when two vectors are orthogonal),

while the cross product of two vectors in R3 generates a vector that is orthogonal to each of the original

vectors. Equations of lines and planes have various representations in R3 and you should be able to work

with these in various settings. Finally, you need to be familiar with the basic ideas behind cylindrical

coordinates and spherical coordinates.

You should know a few general things about functions of several variables such as the nature of their graphs,

difficulties that can arise when computing limits, and the concepts of level curves and level surfaces.

You can then move on to partial derivatives and their significance. Clairaut’s Theorem states that

mixed partial derivatives are equal under certain conditions of continuity. The tangent plane (which gives

a linear approximation for the function) to the level surface f(x, y, z) = k at a point (x0, y0, z0) is given by

fx(x0, y0, z0)(x− x0) + fy(x0, y0, z0)(y − y0) + fz(x0, y0, z0)(z − z0) = 0.

The Chain Rule for functions of several variables is messy but you should have some idea of how it

works. You should know what the gradient vector, denoted ∇f , represents and how it is useful for

computing directional derivatives. (Remember that you need a unit vector when computing directional

derivatives.) Finding max/min values for functions of two or more variables requires some care and the

Second Derivative Test is more involved (recall that saddle points may occur). If the problem involves a

closed and bounded region, the max/min values may occur on the boundary but, since the boundary consists

of a curve or a surface rather than two endpoints, more effort is required. You should also be familiar with the

basic idea behind Lagrange multipliers for finding the extreme values of a function subject to a constraint.

You should be familiar with the basic ideas behind the concepts of double integrals and triple integrals,

including iterated integrals and Fubini’s Theorem. You should be able to set up these integrals and

change the order of integration when necessary. Double integrals in polar coordinates involve the r dr dθ term

and sometimes make an integral much easier to evaluate. Triple integrals in cylindrical coordinates involve

the term r dz dr dθ, while those in spherical coordinates involve the term ρ2 sinφdρ dθ dφ. Applications of

these integrals include area, volume, mass, and center of mass. The area of the surface defined by z = f(x, y)

for (x, y) in the region D is given by∫ ∫
D

√
1 + (fx(x, y))2 + (fy(x, y))2 dA.

We do not expect you to know the change of variables formula (involving Jacobians) for multiple integrals.
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You should know what vector fields are and how to visualize them in R2 and R3. A vector field F is

conservative if there exists a function f such that F = ∇f .

The line integral (with respect to arc length) of a function f (we give the R3 version; R2 is similar) along

a curve C represented parametrically by r(t) = 〈x(t), y(t), z(t)〉 for a ≤ t ≤ b is defined by∫
C

f(x, y, z) ds =

∫ b

a

f
(
x(t), y(t), z(t)

)√
(x′(t))2 + (y′(t))2 + (z′(t))2 dt.

The line integral of a vector field F = P i +Q j +Rk along C is defined by∫
C

F · dr ≡
∫
C

F ·T ds =

∫
C

(
P dx+Qdy +Rdz

)
.

One interpretation of this integral is the work done by a force moving an object along the curve C.

A line integral
∫
C

F ·dr is independent of path if its value depends only on the endpoints of C, not on the

path. It then follows that
∫
C

F · dr is path independent if and only if
∫
C

F · dr = 0 for every closed path. A

vector field with this property must be conservative (as defined above). We thus obtain the Fundamental

Theorem for Line Integrals:

∫
C

∇f · dr = f(r(b))− f(r(a)). You should know how to check that a vector

field F is conservative and, if it is, how to find a function f so that F = ∇f . Recognizing this can make the

evaluation of some line integrals much easier.

Green’s Theorem states that

∫ ∫
D

(∂Q
∂x
− ∂P

∂y

)
dA =

∮
∂D

(
P dx+Qdy

)
, where D is a region in the plane

and ∂D is its positively oriented closed boundary curve. For F = P i +Q j, this theorem becomes∮
∂D

F ·T ds =

∫ ∫
D

(∂Q
∂x
− ∂P

∂y

)
dA and

∮
∂D

F · n ds =

∫ ∫
D

(∂P
∂x

+
∂Q

∂y

)
dA.

One simple consequence of this theorem is a method to find the area A of the region D:

A =

∮
∂D

x dy = −
∮
∂D

y dx =
1

2

∮
∂D

(
x dy − y dx

)
.

The curl of a vector field F is the vector field defined by ∇× F and the divergence of a vector field F is

the scalar ∇ · F, where ∇ is a symbolic notation for the operator i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
. Under appropriate

hypotheses, a vector field is conservative if and only if curl F = 0.

(The following are not part of the written exam but are included for completeness.)

If a surface M is given by z = g(x, y) for (x, y) in a domain D, then the surface integral of f on M is∫ ∫
M

f(x, y, z) dS =

∫ ∫
D

f(x, y, g(x, y))
√

1 + (gx(x, y))2 + (gy(x, y))2 dA.

If F = P i +Q j +Rk is a vector field, then the flux of F across an oriented surface M with normal n is∫ ∫
M

F · n dS =

∫ ∫
D

(
−Pgx −Qgy +R

)
dA.

Stokes’ Theorem states that

∫ ∫
M

curl F · n dS =

∫
∂M

F ·T ds, where M is a surface and ∂M is its closed

boundary curve. This theorem shows that the flux of the curl over a surface equals the circulation of the

function around the boundary. Sometimes one of these integrals is much easier to evaluate than the other.

The Divergence Theorem states that

∫ ∫ ∫
E

div F dV =

∫ ∫
∂E

F · n dS, where E is a solid and ∂E is its

boundary surface. This theorem shows that the sum of all the divergences over the solid equals the flux

through the boundary surface. Sometimes one of these integrals is much easier to evaluate than the other.
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