Calculus III questions

1. Consider the points $A(1,0,1), B(2,1,3), C(0,4,-1)$, and $D(3,4,10)$. Find the point on the plane containing A, B, and C that is closest to the point D.
2. Consider the curve C defined by the parametric equations $x=t^{3}-t$ and $y=t^{2}+8$.
a) Find an equation for the line tangent to C when $t=2$.
b) A quick sketch of C reveals that the graph has a loop. Find the area of the loop.
3. Find parametric equations for the circle $(x-2)^{2}+(y-4)^{2}=9$ for which the circle is traversed once in a clockwise manner for $0 \leq t \leq 1$ beginning at $(5,4)$.
4. Find an equation for the plane tangent to the surface $z=x^{2}+2 y^{3}-4 x y$ at the point $(1,-1,3)$.
5. Let $f(x, y, z)=\frac{x+2 y}{3 z-y}$. Find the directional derivative of f at the point $(2,4,1)$ in the direction from $(2,4,1)$ toward the point $(3,5,0)$.
6. Find the area of the region that lies inside the polar curve $r=4 \cos \theta$ but outside the polar curve $r=\sqrt{8 \cos \theta}$. (You may find the unlabeled graph helpful.)

7. Evaluate $\int_{C} x y d s$, where C is the line segment from $(0,1,2)$ to $(4,2,3)$.
8. Evaluate $\iiint_{S} 3 x y d V$, where S is the solid in the first octant bounded by the planes $y=0$ and $z=0$ and by the surfaces $z=4-x^{2}$ and $y=\sqrt{x}$.
9. Evaluate $\int_{C} \sqrt{1+x^{3}} d x+2 x y d y$, where C is the triangular path that goes from $(0,0)$ to $(1,0)$ to $(1,3)$ then back to $(0,0)$.
10. Find the work done by the force $\mathbf{F}(x, y, z)=y z \mathbf{i}+x z \mathbf{j}+(x y+z) \mathbf{k}$ in moving a particle along the helix given by $x=\cos (\pi t), y=\sin (\pi t)$, and $z=t$ for $0 \leq t \leq 7$.
11. Find the mass of the solid S bounded by the paraboloid $z=8-2 x^{2}-2 y^{2}$ and the $x y$-plane if the density function for S is given by $\rho(x, y, z)=3 x^{2}$.
12. Evaluate the double integral $\int_{0}^{\pi} \int_{y / 2}^{\pi / 2} \frac{\sin x}{x} d x d y$.
13. The temperature T in degrees Celsius at a point (x, y) on a metal plate in the shape of an ellipse is given by $T(x, y)=\sqrt{20-x^{2}-7 y^{2}}$.
a) Find the rate of change of the temperature at the point $(2,1)$ in the direction of the origin.
b) Find a unit vector in the direction for which the temperature decreases most rapidly at $(2,1)$.
14. Find an equation for the plane that contains the point $(1,0,1)$ and the line with parametric equations $x=1-t, y=2+t, z=t$.
15. Let \mathbf{F} be the vector field defined by $\mathbf{F}(x, y, z)=y \mathbf{i}+x \mathbf{j}+x y z \mathbf{k}$ and let C by the path that consists of the straight line from $(0,0,0)$ to $(1,1,0)$ followed by the vertical line from $(1,1,0)$ to $(1,1,1)$. Find the work done by the field \mathbf{F} in moving a particle along the path C.
16. Evaluate $\int_{-\sqrt{2}}^{\sqrt{2}} \int_{0}^{\sqrt{2-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$.
17. Find the maximum value of the function $f(x, y, z)=2 x-2 y+z$ subject to the condition $x^{2}+2 y^{2}+3 z^{2}=114$.
18. Let \mathbf{F} be the vector field defined by $\mathbf{F}(x, y, z)=\left(3 y^{3}-10 x z^{2}\right) \mathbf{i}+9 x y^{2} \mathbf{j}-10 x^{2} z \mathbf{k}$ and let C be the path given by $\mathbf{r}(t)=\langle 1+\sin (\pi t), 2+\cos (3 \pi t), 3-4 t\rangle$ for $0 \leq t \leq 1$. Find the work done by the field \mathbf{F} in moving a particle along the path C.
19. Find the volume of the solid bounded by the planes $y=0, x=2, y=x, z=0$, and $z=2 x+2 y+5$.
20. Find the distance between the parallel planes $2 x-y+2 z=4$ and $2 x-y+2 z=13$.
21. Find a point on the surface $z=x^{2} y-4 x y+5 x-8$ where the tangent plane is perpendicular to the line $x=1+6 t, y=-3-10 t, z=2 t$.
22. A flat circular plate has the shape of the region $\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. The plate is heated so that the temperature in degrees Celsius at any point (x, y) is $T(x, y)=x^{2}+2 y^{2}-x+100$. Find the hottest and coldest points on the plate and the temperature at these points.
23. Find the work done by the force field $\mathbf{F}(x, y)=\left\langle-y^{2}, 2 x\right\rangle$ in moving a particle from $(2,0)$ to ($-2,0$) along the upper half of the circle $x^{2}+y^{2}=4$.
24. Evaluate $\iiint_{S} z d V$, where S is the upper half of the sphere $x^{2}+y^{2}+z^{2}=4$.
25. Verify that the Divergence Theorem is valid for the vector field $\mathbf{F}(x, y, z)=\left\langle x, y, y^{2}\right\rangle$ on the region E that is bounded by the surfaces $\left\{(x, y, z): x^{2}+y^{2}+z^{2}=1, z \geq 0\right\}$ and $\left\{(x, y, z): x^{2}+y^{2} \leq 1, z=0\right\}$.
