Linear Algebra questions

- 1. Find the kernel of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (2x 3y, x + z).
- 2. Find two linearly independent eigenvectors for the matrix $\begin{bmatrix} -2 & -2 \\ -5 & 1 \end{bmatrix}$
- 3. Let U and V be vector spaces and let $T: U \to V$ be a linear transformation. Prove that the kernel of T is a subspace of U.
- 4. Let A be an $n \times n$ matrix. Write down three qualitatively different statements that are equivalent to the statement "A is invertible".
- 5. Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 3 & 0 & 2 \end{bmatrix}$.
- 6. Find all solutions to the system $\begin{aligned} x+2y+9z&=3\\ 2x-y+4z&=1\,.\\ -4x+7y+6z&=3\end{aligned}$
- 7. Let $T: U \to V$ be a linear transformation of U onto V. Prove that the set $\{T(\mathbf{u_1}), \ldots, T(\mathbf{u_n})\}$ spans V if the set $\{\mathbf{u_1}, \ldots, \mathbf{u_n}\}$ spans U.
- 8. Recall that $\mathcal{C}^2([0,1])$ is the vector space of all real-valued functions whose second derivative is continuous on [0,1]. Prove that $W = \{y \in \mathcal{C}^2([0,1]) : 2y'' + xy = 0\}$ is a subspace of $\mathcal{C}^2([0,1])$.
- 9. Suppose that $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ is a linearly independent set of vectors in some vector space V. Determine whether or not the set $\{\mathbf{x} \mathbf{y}, \mathbf{y} \mathbf{z}, \mathbf{x} + \mathbf{z}\}$ is linearly independent.
- 10. Find a basis for the null space of A, a basis for the column space of A, and a basis for the row space of A if $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix}.$
- 11. Let A be an $m \times n$ matrix. Prove that the columns of A are linearly independent if and only if the matrix $A^T A$ is nonsingular.
- 12. Let A be a nonsingular $n \times n$ matrix and suppose that λ is an eigenvalue for A. Explain why $\lambda \neq 0$, then prove that λ^{-1} is an eigenvalue for A^{-1} .
- 13. Let A be a symmetric matrix and suppose that \mathbf{u} and \mathbf{v} are eigenvectors of A corresponding to distinct eigenvalues. Prove that \mathbf{u} and \mathbf{v} are orthogonal.

- 14. An $n \times n$ matrix A is said to be skew-symmetric if $A^T = -A$. Show that the set of all $n \times n$ skew-symmetric matrices is a subspace of the set of all $n \times n$ matrices, then find a basis for the set of all 3×3 skew-symmetric matrices.
- 15. Let V be an inner product space and let $\{\mathbf{u}, \mathbf{v}\}$ be an orthogonal set of nonzero vectors in V. Prove that $\{\mathbf{u}, \mathbf{v}\}$ is a linearly independent set.
- 16. Each of the following statement is false. Find the simplest change that will make the statement true.
 - (a) A set of m vectors in \mathbb{R}^n with m > n is linearly independent.
 - (b) If A is an $m \times n$ matrix, then the matrix $A^T A$ is an $m \times m$ matrix.
 - (c) Similar matrices have the same eigenvectors.
 - (d) An orthogonal set of vectors in linearly independent.
- 17. Let A and B be $n \times n$ matrices and suppose that A is similar to B. Prove that A and B have the same eigenvalues.
- 18. Let A be a 24×60 matrix and suppose that the rows of A are linearly independent. What is the dimension of the null space of A? Explain.
- 19. Let A be an $m \times p$ matrix and let B be a $p \times n$ matrix. Suppose that $AB = \Theta$ (the matrix of all 0's). Prove that the column space of B is a subset of the null space of A.
- 20. Define $T: M_{2\times 2} \to P_1$ by $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = (a+d)t + b$. Prove that T is a linear transformation, then find a basis for the kernel of T.
- 21. Determine whether or not the set $\{t^2 t + 3, -2t^2 + 4t, t^2 + 5t 6\}$ is a basis for P_2 .
- 22. Let V and W be vector spaces and let $T: V \to W$ be a one-to-one linear transformation. Prove that T maps linearly independent subsets of V into linearly independent subsets of W.
- 23. Let A be an $n \times n$ invertible matrix and let B be an $n \times p$ matrix. Prove that the matrices B and AB have the same rank.
- 24. Find all values of a and b for which the following system is consistent.

$$x_1 + 2x_2 + 3x_3 = a$$

 $x_1 + x_2 + 2x_3 = 1$
 $x_2 + x_3 = b$