Linear Algebra questions

1. Find the kernel of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y, z)=(2 x-3 y, x+z)$.
2. Find two linearly independent eigenvectors for the matrix $\left[\begin{array}{cc}-2 & -2 \\ -5 & 1\end{array}\right]$
3. Let U and V be vector spaces and let $T: U \rightarrow V$ be a linear transformation. Prove that the kernel of T is a subspace of U.
4. Let A be an $n \times n$ matrix. Write down three qualitatively different statements that are equivalent to the statement " A is invertible".
5. Find the inverse of the matrix $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 3 & 0 & 2\end{array}\right]$.
$x+2 y+9 z=3$
6. Find all solutions to the system $\quad 2 x-y+4 z=1$.

$$
-4 x+7 y+6 z=3
$$

7. Let $T: U \rightarrow V$ be a linear transformation of U onto V. Prove that the set $\left\{T\left(\mathbf{u}_{\mathbf{1}}\right), \ldots, T\left(\mathbf{u}_{\mathbf{n}}\right)\right\}$ spans V if the set $\left\{\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{n}}\right\}$ spans U.
8. Recall that $\mathcal{C}^{2}([0,1])$ is the vector space of all real-valued functions whose second derivative is continuous on $[0,1]$. Prove that $W=\left\{y \in \mathcal{C}^{2}([0,1]): 2 y^{\prime \prime}+x y=0\right\}$ is a subspace of $\mathcal{C}^{2}([0,1])$.
9. Suppose that $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ is a linearly independent set of vectors in some vector space V. Determine whether or not the set $\{\mathbf{x}-\mathbf{y}, \mathbf{y}-\mathbf{z}, \mathbf{x}+\mathbf{z}\}$ is linearly independent.
10. Find a basis for the null space of A, a basis for the column space of A, and a basis for the row space of A if $A=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right]$.
11. Let A be an $m \times n$ matrix. Prove that the columns of A are linearly independent if and only if the matrix $A^{T} A$ is nonsingular.
12. Let A be a nonsingular $n \times n$ matrix and suppose that λ is an eigenvalue for A. Explain why $\lambda \neq 0$, then prove that λ^{-1} is an eigenvalue for A^{-1}.
13. Let A be a symmetric matrix and suppose that \mathbf{u} and \mathbf{v} are eigenvectors of A corresponding to distinct eigenvalues. Prove that \mathbf{u} and \mathbf{v} are orthogonal.
14. An $n \times n$ matrix A is said to be skew-symmetric if $A^{T}=-A$. Show that the set of all $n \times n$ skew-symmetric matrices is a subspace of the set of all $n \times n$ matrices, then find a basis for the set of all 3×3 skew-symmetric matrices.
15. Let V be an inner product space and let $\{\mathbf{u}, \mathbf{v}\}$ be an orthogonal set of nonzero vectors in V. Prove that $\{\mathbf{u}, \mathbf{v}\}$ is a linearly independent set.
16. Each of the following statement is false. Find the simplest change that will make the statement true.
(a) A set of m vectors in \mathbb{R}^{n} with $m>n$ is linearly independent.
(b) If A is an $m \times n$ matrix, then the matrix $A^{T} A$ is an $m \times m$ matrix.
(c) Similar matrices have the same eigenvectors.
(d) An orthogonal set of vectors in linearly independent.
17. Let A and B be $n \times n$ matrices and suppose that A is similar to B. Prove that A and B have the same eigenvalues.
18. Let A be a 24×60 matrix and suppose that the rows of A are linearly independent. What is the dimension of the null space of A ? Explain.
19. Let A be an $m \times p$ matrix and let B be a $p \times n$ matrix. Suppose that $A B=\Theta$ (the matrix of all 0 's). Prove that the column space of B is a subset of the null space of A.
20. Define $T: M_{2 \times 2} \rightarrow P_{1}$ by $T\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=(a+d) t+b$. Prove that T is a linear transformation, then find a basis for the kernel of T.
21. Determine whether or not the set $\left\{t^{2}-t+3,-2 t^{2}+4 t, t^{2}+5 t-6\right\}$ is a basis for P_{2}.
22. Let V and W be vector spaces and let $T: V \rightarrow W$ be a one-to-one linear transformation. Prove that T maps linearly independent subsets of V into linearly independent subsets of W.
23. Let A be an $n \times n$ invertible matrix and let B be an $n \times p$ matrix. Prove that the matrices B and $A B$ have the same rank.
24. Find all values of a and b for which the following system is consistent.

$$
\begin{array}{r}
x_{1}+2 x_{2}+3 x_{3}=a \\
x_{1}+x_{2}+2 x_{3}=1 \\
x_{2}+x_{3}=b
\end{array}
$$

