Write neat, concise, and accurate solutions to each problem. No calculators are allowed.

1. Find the limit of the sequence $\left\{\frac{3 n-1}{\sqrt{2 n^{2}-n+4}}\right\}$.
2. Find the limit of the sequence $\left\{\left(\frac{2 n+1}{2 n}\right)^{n}\right\}$.
3. Find the limit of the sequence $\left\{4 \sqrt[n]{7}-\sqrt[n]{n^{2}}\right\}$.
4. Give an example of a bounded sequence that does not converge.
5. Give an example of a decreasing sequence that does not converge.
6. Give an example of a convergent sequence that is not monotone.
7. Give an example of a divergent series whose terms converge to 0 .
8. Find the sum of the series $8-6+\frac{9}{2}-\frac{27}{8}+\cdots$.
9. Find the sum of the series $\sum_{k=1}^{\infty} \frac{3^{k-1}}{5^{2 k}}$.
10. Consider the sequence $\left\{a_{n}\right\}$ defined by $a_{1}=1$ and $a_{n+1}=7-\frac{3}{a_{n}}$ for each $n \geq 1$. Use mathematical induction to prove that $\left\{a_{n}\right\}$ is an increasing sequence.
11. Determine whether or not the series $\sum_{k=2}^{\infty} \frac{1}{\ln k}$ converges.
12. Determine whether or not the series $\sum_{k=1}^{\infty} \frac{2 k-1}{k^{3}+5 k-2}$ converges.
13. Classify the series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{4 k+1}$ as absolutely convergent, conditionally convergent, or divergent.
14. Determine whether or not the series $\sum_{k=1}^{\infty} \frac{(2 k)!}{7^{k}(k!)^{2}}$ converges.
15. Find a power series centered at 0 that represents the function $f(x)=\frac{x}{1-x^{2}}$.
16. Find the interval of convergence for the power series $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{3^{k}(5 k+2)}(x-4)^{k}$.
