Math 126

Write neat, concise, and accurate solutions to each problem. No calculators are allowed.

- 1. Find the limit of the sequence $\Big\{\frac{3n-1}{\sqrt{2n^2-n+4}}\Big\}$.
- 2. Find the limit of the sequence $\left\{ \left(\frac{2n+1}{2n}\right)^n \right\}$.
- 3. Find the limit of the sequence $\left\{4\sqrt[n]{7} \sqrt[n]{n^2}\right\}$.
- 4. Give an example of a bounded sequence that does not converge.
- 5. Give an example of a decreasing sequence that does not converge.
- 6. Give an example of a convergent sequence that is not monotone.
- 7. Give an example of a divergent series whose terms converge to 0.
- 8. Find the sum of the series $8 6 + \frac{9}{2} \frac{27}{8} + \cdots$.

9. Find the sum of the series
$$\sum_{k=1}^{\infty} \frac{3^{k-1}}{5^{2k}}$$
.

- 10. Consider the sequence $\{a_n\}$ defined by $a_1 = 1$ and $a_{n+1} = 7 \frac{3}{a_n}$ for each $n \ge 1$. Use mathematical induction to prove that $\{a_n\}$ is an increasing sequence.
- 11. Determine whether or not the series $\sum_{k=2}^{\infty} \frac{1}{\ln k}$ converges.
- 12. Determine whether or not the series $\sum_{k=1}^{\infty} \frac{2k-1}{k^3+5k-2}$ converges.

13. Classify the series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{4k+1}$ as absolutely convergent, conditionally convergent, or divergent.

14. Determine whether or not the series $\sum_{k=1}^{\infty} \frac{(2k)!}{7^k (k!)^2}$ converges.

15. Find a power series centered at 0 that represents the function $f(x) = \frac{x}{1-x^2}$.

16. Find the interval of convergence for the power series $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{3^k (5k+2)} (x-4)^k.$