Math 235: Calculus Lab

Prof. Doug Hundley

Whitman College

Weeks 7-8

This Week

This week, we'll look at the following in LaTeX:

- How to include multiple graphs in one figure.
- How to include a bibliography.

We'll also discuss the topics for Weeks 7-8.

Overview of Lab

Clairaut's theorem (Section 14.3 of online book):
Suppose $z=f(x, y)$ is defined on a disk D that contains the point (a, b). If the functions $f_{x y}$ and $f_{y x}$ are both continuous on D, then

$$
f_{x y}(a, b)=f_{y x}(a, b)
$$

Overview of Lab

Clairaut's theorem (Section 14.3 of online book):
Suppose $z=f(x, y)$ is defined on a disk D that contains the point (a, b). If the functions $f_{x y}$ and $f_{y x}$ are both continuous on D, then

$$
f_{x y}(a, b)=f_{y x}(a, b) .
$$

Example: $f(x, y)=3 x^{2} y+x \sin (y)$

Overview of Lab

Clairaut's theorem (Section 14.3 of online book):
Suppose $z=f(x, y)$ is defined on a disk D that contains the point (a, b). If the functions $f_{x y}$ and $f_{y x}$ are both continuous on D, then

$$
f_{x y}(a, b)=f_{y x}(a, b) .
$$

Example: $f(x, y)=3 x^{2} y+x \sin (y)$

$$
f_{x}(x, y)=6 x y+\sin (y)
$$

Overview of Lab

Clairaut's theorem (Section 14.3 of online book):
Suppose $z=f(x, y)$ is defined on a disk D that contains the point (a, b). If the functions $f_{x y}$ and $f_{y x}$ are both continuous on D, then

$$
f_{x y}(a, b)=f_{y x}(a, b)
$$

Example: $f(x, y)=3 x^{2} y+x \sin (y)$

$$
\begin{aligned}
& f_{x}(x, y)=6 x y+\sin (y) \mid f_{y}(x, y)=3 x^{2}+x \cos (y) \\
& \quad f_{x y}=6 x+\cos (y)
\end{aligned}
$$

Overview of Lab

Clairaut's theorem (Section 14.3 of online book):
Suppose $z=f(x, y)$ is defined on a disk D that contains the point (a, b). If the functions $f_{x y}$ and $f_{y x}$ are both continuous on D, then

$$
f_{x y}(a, b)=f_{y x}(a, b)
$$

Example: $f(x, y)=3 x^{2} y+x \sin (y)$

$$
\begin{array}{c|c}
f_{x}(x, y)=6 x y+\sin (y) & f_{y}(x, y)=3 x^{2}+x \cos (y) \\
f_{x y}=6 x+\cos (y) & f_{y x}=6 x+\cos (y)
\end{array}
$$

In Maple:
$\mathrm{F}:=3 * \mathrm{x}^{\wedge} 2 * \mathrm{y}+\mathrm{x} * \sin (\mathrm{y})$
First derivatives:
Fx:=diff(F,x); Fy:=diff(F,y);
Second derivatives:
Fxx:=diff(F,x\$2); Fyy:=diff(F,y\$2);
Mixed second derivatives:
Fxy:=diff(F,x,y); Fyx:=diff(F,y,x);

Example

Compute the partial derivative of F with respect to x at the point $(3,1)$ by using the definition of the derivative (in Maple).

$$
F_{x}(3,1)=
$$

Example

Compute the partial derivative of F with respect to x at the point $(3,1)$ by using the definition of the derivative (in Maple).

$$
F_{x}(3,1)=\lim _{h \rightarrow 0} \frac{F(3+h, 1)-F(3,1)}{h}
$$

Example

Compute the partial derivative of F with respect to x at the point $(3,1)$ by using the definition of the derivative (in Maple).

$$
\begin{gathered}
F_{x}(3,1)=\lim _{h \rightarrow 0} \frac{F(3+h, 1)-F(3,1)}{h} \\
=\lim _{h \rightarrow 0} \frac{\left(3(3+h)^{2}+(3+h) \sin (1)\right)-(27+3 \sin (1))}{h}
\end{gathered}
$$

Example

Compute the partial derivative of F with respect to x at the point $(3,1)$ by using the definition of the derivative (in Maple).

$$
\begin{gathered}
F_{x}(3,1)=\lim _{h \rightarrow 0} \frac{F(3+h, 1)-F(3,1)}{h} \\
=\lim _{h \rightarrow 0} \frac{\left(3(3+h)^{2}+(3+h) \sin (1)\right)-(27+3 \sin (1))}{h}
\end{gathered}
$$

In Maple:

$$
\begin{aligned}
& \mathrm{F}:=(\mathrm{x}, \mathrm{y})->3 * \mathrm{x}^{\wedge} 2 * \mathrm{y}+\mathrm{x} * \sin (\mathrm{y}) ; \\
& \mathrm{F} 1:=(\mathrm{F}(3+\mathrm{h}, 1)-\mathrm{F}(3,1)) / \mathrm{h} ; \\
& \mathrm{F} 2:=\operatorname{limit}(\mathrm{F} 1, \mathrm{~h}=0) ;
\end{aligned}
$$

Similarly, we can define $F_{x y}$:

$$
F_{x y}(3,1)=
$$

Similarly, we can define $F_{x y}$:

$$
F_{x y}(3,1)=\lim _{h \rightarrow 0} \frac{F_{x}(3,1+h)-F_{x}(3,1)}{h}
$$

where $F_{x}=6 x y+\sin (y)$.

To get several graphs on one figure, you can put includegraphics for each graph. For example
\begin\{figure\} [h] }
\qquad

\caption\{This is a caption for the figure.\}
\label\{LabelForGraph01\}
\end\{figure\} }
See the result in the PDF version (use \quad for less space).

For the bibliography, here's an example- Put it at the end where you want the bib to appear.
\begin\{thebibliography\}\{9\} }
\bibitem\{Erdos01\} P. Erd $\backslash H$ os, $\backslash e m p h\{A ~ s e l e c t i o n ~$ of problems and results in combinatorics\}, Recent trends in combinatorics (Matrahaza, 1995), Cambridge Univ. Press, Cambridge, 2001, pp. 1--6.
\bibitem\{Knuth92\} D.E. Knuth, \emph\{Two notes on notation\}, Amer. Math. Monthly \textbf\{99\} (1992), 403--422.
\bibitem\{DRH\} D. Hundley, \url\{http://www.whitman.edu/~hundledr\}, Retrieved Feb 28, 2017.
\end\{thebibliography\} }

Now in the text, include something like:
This is obvious \cite\{Erdos01\}.
Which results in: This is obvious [1].
NOTES:

- If you see [?] or [??], run LaTeX again.
- For URLs, use the url package (include at the top).

As you go through the lab:

- Think about what it means (graphically) for a function to be continuous (taking a limit in the plane).
- Compute partial derivatives in Maple and by using the definition.
- Understand why a certain function fails to satisfy the hypotheses of Clairaut's Theorem.
- Write up your thoughts. Be sure to include references and figures! Use the template to get you started.

囯 P. Erdős, A selection of problems and results in combinatorics, Recent trends in combinatorics (Matrahaza, 1995), Cambridge Univ. Press, Cambridge, 2001, pp. 1-6.
囯 D.E. Knuth, Two notes on notation, Amer. Math. Monthly 99 (1992), 403-422.
D. Hundley, http://www.whitman.edu/~hundledr, Retrieved Feb 28, 2017.

