Math 235: Calculus Lab

Prof. Doug Hundley

Whitman College
Week 9

Ants and Three Paths: The goal is to go from $(3,0,0)$ to $(-3,0,0)$ on a path with the shortest distance.

Trial Runs:

1. Go along the "equator" of the doughnut.
2. Go directly to the inside circle, then go around, then climb back out.
3. Don't go directly to the inside circle- Instead, go around both circles simultaneously.

The Torus

The torus is an object that looks like a doughnut:

Torus Construction

Our torus is built by taking the graph of the unit circle:

$$
(x-2)^{2}+z^{2}=1
$$

and spinning it around the z-axis:

Circles

Any circle with fixed radius K can be parametrized by one numberThe central angle, θ.

Circles

Any circle with fixed radius K can be parametrized by one numberThe central angle, θ.

That is, for any point on circle of radius K, we can express that point as:

$$
\begin{aligned}
& x(\theta)=K \cos (\theta) \\
& y(\theta)=K \sin (\theta)
\end{aligned}
$$

Obtaining a Point on the Torus

To obtain any point on the surface of the torus we will:

- Start on the circle $(x-2)^{2}+z^{2}=1$, and rotate through an angle α.

So far, before we rotate into the $x y$-plane,

$$
\begin{gathered}
R=\cos (\alpha)+2 \\
z=\sin (\alpha)
\end{gathered}
$$

We rotate to get the x and y coordinates...

- In the $x y$-plane, we will then rotate through an angle β.

$$
x=R \cos (\beta)
$$

- In the $x y$-plane, we will then rotate through an angle β.

$$
x=R \cos (\beta)=\cos (\beta)(\cos (\alpha)+2)
$$

$$
y=R \sin (\beta)=
$$

- In the $x y$-plane, we will then rotate through an angle β.

$$
\begin{aligned}
& x=R \cos (\beta)=\cos (\beta)(\cos (\alpha)+2) \\
& y=R \sin (\beta)=\sin (\beta)(\cos (\alpha)+2)
\end{aligned}
$$

- In the $x y$-plane, we will then rotate through an angle β.

$$
\begin{gathered}
x=R \cos (\beta)=\cos (\beta)(\cos (\alpha)+2) \\
y=R \sin (\beta)=\sin (\beta)(\cos (\alpha)+2) \\
z=\sin (\alpha) \quad \text { unchanged }
\end{gathered}
$$

Conclusion thus far:

The surface of the torus can be expressed as:

$$
\begin{gathered}
x=\cos (\beta)(\cos (\alpha)+2) \\
y=\sin (\beta)(\cos (\alpha)+2) \\
z=\sin (\alpha)
\end{gathered}
$$

Example points:

$$
\beta=0, \alpha=0 \quad \Rightarrow
$$

Conclusion thus far:

The surface of the torus can be expressed as:

$$
\begin{gathered}
x=\cos (\beta)(\cos (\alpha)+2) \\
y=\sin (\beta)(\cos (\alpha)+2) \\
z=\sin (\alpha)
\end{gathered}
$$

Example points:

$$
\begin{aligned}
& \beta=0, \alpha=0 \quad \Rightarrow \quad(3,0,0) \\
& \beta=\pi / 2, \alpha=\pi \quad \Rightarrow
\end{aligned}
$$

Conclusion thus far:

The surface of the torus can be expressed as:

$$
\begin{gathered}
x=\cos (\beta)(\cos (\alpha)+2) \\
y=\sin (\beta)(\cos (\alpha)+2) \\
z=\sin (\alpha)
\end{gathered}
$$

Example points:

$$
\begin{aligned}
& \beta=0, \alpha=0 \quad \Rightarrow \quad(3,0,0) \\
& \beta=\pi / 2, \alpha=\pi \quad \Rightarrow \quad(0,1,0) \\
& \beta=\pi, \alpha=0 \quad \Rightarrow
\end{aligned}
$$

Conclusion thus far:

The surface of the torus can be expressed as:

$$
\begin{gathered}
x=\cos (\beta)(\cos (\alpha)+2) \\
y=\sin (\beta)(\cos (\alpha)+2) \\
z=\sin (\alpha)
\end{gathered}
$$

Example points:

$$
\begin{gathered}
\beta=0, \alpha=0 \quad \Rightarrow \quad(3,0,0) \\
\beta=\pi / 2, \alpha=\pi \quad \Rightarrow \quad(0,1,0) \\
\beta=\pi, \alpha=0 \quad \Rightarrow \quad(-3,0,0)
\end{gathered}
$$

Curves in the (β, α) plane:
If $\beta=\beta(t)$ and $\alpha=\alpha(t)$, then substituting these into

$$
\begin{gathered}
x=\cos (\beta)(\cos (\alpha)+2) \\
y=\sin (\beta)(\cos (\alpha)+2) \\
z=\sin (\alpha)
\end{gathered}
$$

Creates the curve $\langle x(t), y(t), z(t)\rangle$ on the surface.

Path 1: Around the "Equator"

Path 1 keeps $\alpha=0$ and β ranging from 0 to π. Therefore:

$$
\begin{aligned}
& \beta(t)=\pi t \\
& \alpha(t)=0
\end{aligned} \quad 0 \leq t \leq 1 \quad \Rightarrow \quad \begin{aligned}
& x(t)=3 \cos (\pi t) \\
& y(t)=3 \sin (\pi t) \\
& z(t)=0
\end{aligned}
$$

Path 1: Around the "Equator"

Path 1 keeps $\alpha=0$ and β ranging from 0 to π. Therefore:

$$
\begin{aligned}
& \beta(t)=\pi t \\
& \alpha(t)=0
\end{aligned} \quad 0 \leq t \leq 1 \quad \Rightarrow \quad \begin{aligned}
& x(t)=3 \cos (\pi t) \\
& y(t)=3 \sin (\pi t) \\
& z(t)=0
\end{aligned}
$$

The path length is

Path 1: Around the "Equator"

Path 1 keeps $\alpha=0$ and β ranging from 0 to π. Therefore:

$$
\begin{aligned}
& \beta(t)=\pi t \\
& \alpha(t)=0
\end{aligned} \quad 0 \leq t \leq 1 \Rightarrow \begin{aligned}
& x(t)=3 \cos (\pi t) \\
& y(t)=3 \sin (\pi t) \\
& z(t)=0
\end{aligned}
$$

The path length is half the circumference of a circle of radius 3 :

Path 1: Around the "Equator"

Path 1 keeps $\alpha=0$ and β ranging from 0 to π. Therefore:

$$
\begin{aligned}
& \beta(t)=\pi t \\
& 0 \leq t \leq 1 \quad \Rightarrow \quad y(t)=3 \sin (\pi t) \\
& z(t)=0
\end{aligned}
$$

The path length is half the circumference of a circle of radius 3 :

$$
3 \pi
$$

Path 2

Path 2 is actually 3 paths:

$$
(0,0) \rightarrow(0, \pi) \rightarrow(\pi, \pi) \rightarrow(\pi, 0)
$$

Path 2A: $\beta=0, \alpha=\pi t$
Path 2B: $\beta=\pi t, \alpha=\pi$
Path 2C: $\beta=\pi, \alpha=\pi(1-t)$
In Maple, do these separately, and plot them all together.
Path Length: $\pi+\pi+\pi=3 \pi$

Path 2 in (β, α) plane

Path 3

In this case, take β from 0 to π. Then α will go from 0 to 2π.

$$
\begin{aligned}
& \beta(t)=\pi t \\
& \alpha(t)=2 \pi t
\end{aligned} \Rightarrow \quad \begin{aligned}
& x(t)=\cos (\pi t)(\cos (2 \pi t)+2) \\
& y(t)=\sin (\pi t)(\cos (2 \pi t)+2) \\
& z(t)=\sin (2 \pi t)
\end{aligned}
$$

Matlab reminders:

- How do we plot a (parametric) surface?

Matlab reminders:

- How do we plot a (parametric) surface?
- How do we plot a curve in three dimensions?

Matlab reminders:

- How do we plot a (parametric) surface?
- How do we plot a curve in three dimensions?
- How do we put those plots together?

Matlab reminders:

- How do we plot a (parametric) surface?
- How do we plot a curve in three dimensions?
- How do we put those plots together?
- How do we compute the arc length of a curve?

Matlab reminders:

- How do we plot a (parametric) surface?
- How do we plot a curve in three dimensions?
- How do we put those plots together?
- How do we compute the arc length of a curve?

Next Week: Continue with the current project and start to write results.

