Math 235: Calculus Lab

Prof. Doug Hundley

Whitman College

Week 9

(ロ)、(型)、(E)、(E)、 E) の(の)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Ants and Three Paths: The goal is to go from (3,0,0) to (-3,0,0) on a path with the shortest distance.

Trial Runs:

- 1. Go along the "equator" of the doughnut.
- 2. Go directly to the inside circle, then go around, then climb back out.
- 3. Don't go directly to the inside circle- Instead, go around both circles simultaneously.

The Torus

The torus is an object that looks like a doughnut:

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣

Torus Construction

Our torus is built by taking the graph of the unit circle:

$$(x-2)^2 + z^2 = 1$$

and spinning it around the z-axis:

Circles

Any circle with fixed radius K can be parametrized by one number. The central angle, $\theta.$

Circles

Any circle with fixed radius K can be parametrized by one number. The central angle, θ .

That is, for any point on circle of radius K, we can express that point as:

$$egin{array}{rl} x(heta) &= K\cos(heta) \ y(heta) &= K\sin(heta) \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Obtaining a Point on the Torus

To obtain any point on the surface of the torus we will:

Start on the circle (x − 2)² + z² = 1, and rotate through an angle α.

So far, before we rotate into the xy-plane,

$$R = \cos(\alpha) + 2$$
$$z = \sin(\alpha)$$

We rotate to get the x and y coordinates...

• In the xy-plane, we will then rotate through an angle β .

$$x = R\cos(\beta)$$

• In the xy-plane, we will then rotate through an angle β .

$$x = R\cos(\beta) = \cos(\beta)(\cos(\alpha) + 2)$$

$$y = R \sin(\beta) =$$

▶ In the xy-plane, we will then rotate through an angle β .

 $x = R\cos(\beta) = \cos(\beta)(\cos(\alpha) + 2)$

$$y = R\sin(\beta) = \sin(\beta)(\cos(\alpha) + 2)$$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

▶ In the xy-plane, we will then rotate through an angle β .

 $x = R\cos(\beta) = \cos(\beta)(\cos(\alpha) + 2)$

$$y = R\sin(\beta) = \sin(\beta)(\cos(\alpha) + 2)$$

 $z = \sin(\alpha)$ unchanged

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The surface of the torus can be expressed as:

$$x = \cos(\beta)(\cos(\alpha) + 2)$$
$$y = \sin(\beta)(\cos(\alpha) + 2)$$
$$z = \sin(\alpha)$$

Example points:

$$\beta = \mathbf{0}, \alpha = \mathbf{0} \quad \Rightarrow$$

The surface of the torus can be expressed as:

$$x = \cos(\beta)(\cos(\alpha) + 2)$$
$$y = \sin(\beta)(\cos(\alpha) + 2)$$
$$z = \sin(\alpha)$$

Example points:

$$\beta = 0, \alpha = 0 \quad \Rightarrow \quad (3, 0, 0)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

$$\beta = \pi/2, \alpha = \pi \quad \Rightarrow$$

The surface of the torus can be expressed as:

$$x = \cos(\beta)(\cos(\alpha) + 2)$$
$$y = \sin(\beta)(\cos(\alpha) + 2)$$
$$z = \sin(\alpha)$$

Example points:

$$eta=0, lpha=0 \quad \Rightarrow \quad (3,0,0)$$
 $eta=\pi/2, lpha=\pi \quad \Rightarrow \quad (0,1,0)$
 $eta=\pi, lpha=0 \quad \Rightarrow$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The surface of the torus can be expressed as:

$$x = \cos(\beta)(\cos(\alpha) + 2)$$
$$y = \sin(\beta)(\cos(\alpha) + 2)$$
$$z = \sin(\alpha)$$

Example points:

$$\beta = 0, \alpha = 0 \quad \Rightarrow \quad (3, 0, 0)$$
$$\beta = \pi/2, \alpha = \pi \quad \Rightarrow \quad (0, 1, 0)$$
$$\beta = \pi, \alpha = 0 \quad \Rightarrow \quad (-3, 0, 0)$$

Curves in the (β, α) plane:

If $\beta = \beta(t)$ and $\alpha = \alpha(t)$, then substituting these into $x = \cos(\beta)(\cos(\alpha) + 2)$ $y = \sin(\beta)(\cos(\alpha) + 2)$ $z = \sin(\alpha)$

Creates the curve $\langle x(t), y(t), z(t) \rangle$ on the surface.

Path 1 keeps $\alpha = 0$ and β ranging from 0 to π . Therefore:

$$egin{array}{rcl} eta(t) &= \pi t & & x(t) &= 3\cos(\pi t) \ lpha(t) &= 0 & & y(t) &= 3\sin(\pi t) \ z(t) &= 0 & & z(t) &= 0 \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Path 1 keeps $\alpha = 0$ and β ranging from 0 to π . Therefore:

$$egin{array}{rcl} eta(t) &= \pi t & & x(t) &= 3\cos(\pi t) \ lpha(t) &= 0 & & y(t) &= 3\sin(\pi t) \ z(t) &= 0 & & z(t) &= 0 \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The path length is

Path 1 keeps $\alpha = 0$ and β ranging from 0 to π . Therefore:

$$egin{array}{rcl} eta(t) &= \pi t & & x(t) &= 3\cos(\pi t) \ lpha(t) &= 0 & & y(t) &= 3\sin(\pi t) \ & z(t) &= 0 \end{array}$$

The path length is half the circumference of a circle of radius 3:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Path 1 keeps $\alpha = 0$ and β ranging from 0 to π . Therefore:

$$egin{array}{rcl} eta(t) &= \pi t & & x(t) &= 3\cos(\pi t) \ lpha(t) &= 0 & & y(t) &= 3\sin(\pi t) \ z(t) &= 0 & & z(t) &= 0 \end{array}$$

The path length is half the circumference of a circle of radius 3:

 3π

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The (β, α) plane

・ロト・4回ト・4回ト・4回ト・4回ト

Path 2

Path 2 is actually 3 paths:

$$(0,0)
ightarrow (0,\pi)
ightarrow (\pi,\pi)
ightarrow (\pi,0)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Path 2A:
$$eta=$$
 0, $lpha=\pi t$
Path 2B: $eta=\pi t$, $lpha=\pi$
Path 2C: $eta=\pi$, $lpha=\pi(1-t)$

In Maple, do these separately, and plot them all together.

Path Length: $\pi + \pi + \pi = 3\pi$

Path 2 in (β, α) plane

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ(?)

In this case, take β from 0 to π . Then α will go from 0 to 2π .

$$\begin{array}{ll} \beta(t) &= \pi t \\ \alpha(t) &= 2\pi t \end{array} \Rightarrow \begin{array}{ll} x(t) &= \cos(\pi t)(\cos(2\pi t) + 2) \\ y(t) &= \sin(\pi t)(\cos(2\pi t) + 2) \\ z(t) &= \sin(2\pi t) \end{array}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

How do we plot a (parametric) surface?

- How do we plot a (parametric) surface?
- How do we plot a curve in three dimensions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- How do we plot a (parametric) surface?
- How do we plot a curve in three dimensions?

How do we put those plots together?

- How do we plot a (parametric) surface?
- How do we plot a curve in three dimensions?
- How do we put those plots together?
- How do we compute the arc length of a curve?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- How do we plot a (parametric) surface?
- How do we plot a curve in three dimensions?
- How do we put those plots together?
- How do we compute the arc length of a curve?

Next Week: Continue with the current project and start to write results.