
Linear Systems and Tanks (Replaces 7.1-7.2)

This is where we’ll depart somewhat from the book. We will focus on systems of two
equations in two unknowns to simplify our analysis.

Key Definition: A system of equations can be written in matrix-vector form as shown
below (this is a definition)

ax+ by = e
cx+ dy = f

⇔
[
a b
c d

] [
x
y

]
=

[
e
f

]
Similarly, we could extend this to three variables (this is just to show you what it would
look like):

a11x1 + a12x2 + a13x3 = b1
a21x1 + a22x2 + a23x3 = b2
a31x1 + a32x2 + a33x3 = b3

⇔

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 x1
x2
x3

 =

 b1
b2
b3


More Definitions...

In Calc III, we defined a vector as something with direction and magnitude. For us, a vector
is simply a column with a certain number of elements (the vectors above are in R2 since they
each have two elements).

A matrix is simply an array of numbers, and the size of a matrix is defined as the
number of rows × the number of columns (similar to a spreadsheet, rows always come first).
We identify elements of the array by locating the row and column. For example, in the first
matrix, if we call it A, then

A(1, 1) = a A(1, 2) = b
A(2, 1) = c A(2, 2) = d

We will work with 2×2 matrices. The definition above gives meaning to matrix-vector
multiplication. A couple of examples:

• Write the following system in equivalent matrix-vector form:

3x− 2y = 4
x+ y = −1

Solution:

[
3 −2
1 1

] [
x
y

] [
4
−1

]
• Using the definition, perform the matrix-vector multiplication:[

1 2
−1 3

] [
1
2

]
=

[
1(1) + 2(2)
−1(1) + 3(2)

]
=

[
5
5

]
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From Calculus III, we already know how to compute the determinant of a 2× 2 and a
3× 3. There, we used straight lines as shortcut notation for the determinant (this is not the
absolute value): ∣∣∣∣ a b

c d

∣∣∣∣ = ad− bc∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣− a12 ∣∣∣∣ a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣ a21 a22
a31 a32

∣∣∣∣
The transpose of a matrix A is denoted as AT and is formed by taking the columns

of A and making them the rows of AT . The trace of a matrix is the sum of the diagonal
elements. For example,

A =

[
1 2
3 4

]
AT =

[
1 3
2 4

]
Tr(A) = 1 + 4 = 5

Scalar Multiplication: Goes like you might suspect- Multiply every element of the matrix.

5

[
−1 0

1 2

]
=

[
−5 0

5 10

]
Matrix-Matrix Multiplication is defined via matrix-vector multiplication. Think of the
second matrix in terms of its columns:[

a b
c d

] [
e f
g h

]
=

[ [
a b
c d

] [
e
g

] [
a b
c d

] [
f
h

] ]

=

[
ae+ bg af + bh
ce+ dg cf + dh

]
Example: Compute the following:[

−1 0
1 2

] [
3 1
1 −2

]
=

[
−3 + 0 −1 + 0

3 + 2 1− 4

]

5

[
3 1
1 −2

]
=

[
15 5
5 −10

]
Inverses and the Identity

There are two special matrices used in matrix multiplication: The identity and the inverse.
The identity matrix is a matrix whose only non-zero elements are the ones along its diagonal.
It can be any square size, as needed (use the one for which the given multiplication is defined).

I =

[
1 0
0 1

]
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You will verify in the exercises that, for any matrix A, the identity works like the number 1
in the real numbers:

AI = IA = A

The inverse of a matrix A is another matrix, A−1 so that:

AA−1 = A−1A = I

You will verify in the exercises that, given a 2× 2 matrix, the inverse can be written down
directly:

A =

[
a b
c d

]
⇒ A−1 =

1

ad− bc

[
d −b
−c a

]
(1)

Example: If A

[
2 1
1 3

]
, and λ is arbitrary scalar, compute A− λI.

A− λI =

[
2 1
1 3

]
− λ

[
1 0
0 1

]
=

[
2 1
1 3

]
−
[
λ 0
0 λ

]
=

[
2− λ 1

1 3− λ

]

Solving the System

In solving a system of equations, there are three (and only three) possible outcomes: (i)
Exactly one solution (intersecting lines), (ii) No Solution (parallel lines), (iii) an infinite
number of solutions (the same line).

Theorem: If the matrix of coefficients has an inverse, then the system Ax = b has exactly
one solution, x = A−1b (which could also be found by Cramer’s Rule or computing the
inverse directly using Equation 1).

Corollary 1: If the matrix of coefficients has a non-zero determinant, then there is exactly
one solution to the system of equations (because we can compute the inverse).

Corollary 2: If we are solving Ax = 0 for x, then we obtain an infinite number of solutions
only when det(A) = 0 (You might notice that in this system, there are only two possible
outcomes rather than three. What are they?)
Examples:

1. Solve the system: [
−1 0

1 2

] [
x
y

]
=

[
2
−3

]
SOLUTION: The determinant is −2, so there is exactly one solution. Below we solve
it using the inverse (but you could use Cramer’s Rule).[

x
y

]
=

1

−2

[
2 0
−1 −1

] [
2
−3

]
=

[
−2
−1/2

]
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2. Solve the system: [
1 2
2 4

] [
x
y

]
=

[
0
0

]
SOLUTION: The determinant is 0, so there is an infinite number of solutions (NOTE:
We cannot have “no solution”, because x = 0 and y = 0 is always one solution). The
solutions are any (x, y) on either line (which is the same line):

x+ 2y = 0
2x+ 4y = 0

We always want to represent this in parametric form. To do this, we need a point (in
this case, the origin is very nice), and a direction rather than a slope. Note that if the
slope is m, the direction would be 〈1,m〉[

0
0

]
+ t

[
1

−1/2

]
or t

[
2
−1

]
or t

[
−2

1

]
There are an infinite number of ways of parameterizing the line- In the three cases
above, the t′s are not equal to each other.

More on Lines and Rays

Recall from Calculus III: A line in two or three dimensions is defined by a point ~p and the
direction ~q:

~p+ t~q −∞ < t <∞

So, for example, the line going through the point (1, 2, 3) in the direction of 〈1,−1, 1〉 can
be written as:  1

2
3

+ t

 1
−1

1

 =

 1 + t
2− t
3 + t


Extra Example: What does this look like: 1

2
3

+ et

 1
−1

1

 −∞ < t <∞

SOLUTION: It is a ray rather than a line. As t→ −∞, the length of the vector goes to zero
(the line goes to the point), then as t increases, we move farther and farther in the direction
given.
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Systems of DEs and Matrices

Definition: An autonomous system of first order linear differential equations is a system
of the following form. These are each equivalent to the other.

x′1 = ax1 + bx2
x′2 = cx1 + dx2

⇔
[
x′1
x′2

]
=

[
a b
c d

] [
x1
x2

]
⇔ x′ = Ax

Definition: A solution to the system is a set of parametric functions that satisfies the
given relationship.
Definition: The trivial solution: the origin (x1 = 0, x2 = 0) is always a solution to the
autonomous linear system. In fact, any constant solution to Ax = 0 is an equilibrium
solution.

Examples

1. Show that x(t) = [cos(t), sin(t)]T solves the system:

x′(t) =

[
0 −1
1 0

]
x

SOLUTION: We compute x′(t) first, then we’ll compute the matrix-vector on the right
side of the equation. We want those two computations to be the same:

For the derivatives, we get x′1(t) = − sin(t) and x′2(t) = cos(t).

For the matrix-vector computation, we get:[
0 −1
1 0

] [
cos(t)
sin(t)

]
=

[
− sin(t)

cos(t)

]
We see that they match.

2. Show that x(t) = e2t
[

4
2

]
solves the differential equation:

x′ =

[
3 −2
2 −2

]
x

SOLUTION: As before, first compute x′, then compute Ax and see if they are the
same quantity:

• x′ = 2e2t
[

4
2

]
= e2t

[
8
4

]
• Ax =

[
3 −2
2 −2

]
e2t
[

4
2

]
= e2t

[
3 −2
2 −2

] [
4
2

]
= e2t

[
3(4)− 2(2)
2(4)− 2(2)

]
= e2t

[
8
4

]
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Tank Mixing

Consider a system of two tanks, A and B. Initially, they both contain 50 gallons of pure
water. A pipe flowing at 1 gal/min is pumping 2 oz/gal of salt into tank A, and is pumping
brine at 2 gal/min with 3 oz/gal of salt into tank B. Further, there are tubes connecting
tanks A and B, each is pumping at 1 gal/min. Lastly, a pipe leading out is pumping at 1
gal/min for tank A, and 2 gal/min from tank B (see the figure). Model the amount of salt
in the tanks at time t.

SOLUTION: Remember to model (Rate of change) = Rate in − Rate out.
Let A(t), B(t) be the ounces of salt in Tanks A,B respectively. Then for tank A, we have

the following. You might note that when brine is being pumped out, the destination doesn’t
really matter. For example, the “rate out” for tank A can be computed by combining the
outputs to the outside and to tank B.

dA

dt
=

(
2 oz

gal
· 1 gal

min
+

1 gal

min
· B oz

50 gal

)
−
(

2 gal

min
· A oz

50 gal

)
dB

dt
=

(
3 oz

gal
· 2 gal

min
+

1 gal

min
· A oz

50 gal

)
−
(

3 gal

min
· B oz

50 gal

)
Simplifying a bit, we have:[

A′

B′

]
=

[
−2/50 1/50
1/50 −3/50

] [
A
B

]
+

[
2
6

]
To find the equilibrium, we set the derivatives to zero. To simplify the equations, we’ll also
multiply by 50.

−2A+B + 100 = 0
A− 3B + 300 = 0

⇒ 2A−B = 100
−A+ 3B = 300

Using your favorite technique (substitution or Cramer’s rule), we find that

A = 120 B = 140
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You should check that these seem reasonable.

You might have noticed that we don’t have the form x′ = Ax, but we’re close. We can
actually make our system look like this by making a small substitution:

x1 = A− 120
x2 = B − 140

Now we create our system in x1, x2. First, we see that x′1 = A′ and x′2 = B′. Furthermore,
we see that[
−2/50 1/50
1/50 −3/50

] [
x1
x2

]
=

[
−2/50 1/50
1/50 −3/50

] [
A− 120
B − 140

]
=

−2
50
A+ 1

50
B + 2

1
50
A− 3

50
B + 6

=

[
A′

B′

]
Therefore, using the substitution x1 = A− 120 and x2 = B − 140, the equivalent system of
equations is given by: [

x′1
x′2

]
=

[
−2/50 1/50
1/50 −3/50

] [
x1
x2

]

Homework (to replace 7.2)

1. Let A,B be the matrices below. Compute the matrix operation listed.

A =

[
1 −2
2 3

]
B =

[
2 −1
−1 1

]
(a) 2A+B

(b) AB

(c) BA

(d) AT +BT

(e) A−1

(f) B−1

2. Vectors and matrices might have complex numbers. If z = 3 + 2i and vector v =
[1 + i, 2− 2i]T , then find the real part and the imaginary part of zv.

3. If a line goes through (1, 2) in the direction of the vector 〈−1, 1〉, write the equation
of the line as y = mx+ b.

4. Write the vector (parametric) form of the line (i) y = 2x+ 3, (ii) 2x+ 3y = 1

5. Write the parametric form of the line through the point (2, 3) with slope 2.

6. What will the graph of e2t
[

1
2

]
be (where t is any real number).

7. Adding two vectors: Geometrically (and numerically) compute the following, where

u =

[
1
−1

]
and v =

[
2
1

]
. Be sure to draw each vector out, and see if you can see a

pattern.
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(a) u + v (b) u− 2v (c) u + 1
2
v (d) −u + v

8. Verify that x1(t) below satisfies the DE below.

x′ =

[
1 1
4 1

]
x, x1(t) = e3t

[
1
2

]
9. Consider

x′ = 2x+ 3y + 1
y′ = x− y − 2

.

First find the equilibrium solution, xe, ye. Then show that, if u = x−xe and v = y−ye,
then

u′ = 2u+ 3v
v′ = u− v

10. Each system below is nonlinear. Solve each by first writing the system as dy/dx.

(a)
x′ = y(1 + x3)
y′ = x2

(b)
x′ = 4 + y3

y′ = 4x− x3 (c)
x′ = 2x2y + 2x
y′ = −(2xy2 + 2y)

(Note: Some of these may be exact.)
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