M338, Mathematical Statistics Homework

DATE	Homework
Dec 1	Sect 8.1-8.2: 8.5^* , 7^* , 9^* , 16 , 17 , 63 , 67 , 71 Read 8.3
Dec 3	Sect 8.4-8.5: 8.18, 19, 22-24, 28, 77, 31, 33*, 79
Dec 5	Finish Ch 8, begin Ch 10
Dec 8	Sections 10.2, 10.7, 10.8: 10.2, 5, 7, 14, 50, 59, 62
Dec 10	Continue with Ch 10, Begin Ch 11.1-2: 11.1, 6, 20, 21, 29, 31
Dec 12	Catch up/Review

Final Exam: Currently scheduled for 9-11AM, Wed, Dec 17th.

*-Hints for the homework:

- 8.5 Might change the set up to: X_1, \ldots, X_{n_1} , then Y_1, \ldots, Y_{n_2} , wehre n_1 of the Bernoulli trials use parameter θ_1 , and the rest use θ_2 .
- 8.7 You might look at the distribution first to get a feeling for what it is.
 - Show that the mean of each X_i is zero.
 - Show that the variance of each X_i can be written as:

$$1 - \left(\frac{1}{2}\right)^{i-1} + \left(\frac{1}{4}\right)^i$$

- Show that the variance of Y_n can be written as

$$n-2+\frac{1}{3}+A_n$$

where $A_n \to 0$ as $n \to \infty$.

8.9 - Show that
$$E(|X_i - \mu_i|^3) = \left(1 - \left(\frac{1}{2}\right)^i\right)^3$$

- Find A so that:

$$[\operatorname{var}(Y_n)]^{-3/2} \sum_{i=1}^n c_i = \frac{\sum_{i=1}^n A^3}{\left(\sum_{i=1}^n A^2\right)^{3/2}}$$

You may assume that this fraction has the form:

$$\frac{n + \text{Terms go to zero as } n \to \infty}{(n + \text{Terms go to zero as } n \to \infty)^{3/2}}$$

(And therefore, the CLT holds).