Setting up and Solving in Excel

Here is a good way to organize the power distribution problem. I've used one array of constants for the costs, and reserved space for the array of variables (x_{ij}) . Then we keep track of the supplies down the last column (sums), and the demands across the bottom row. The total cost is then a "dot product" between the cost array and variable array (as shown in the formula boxes). (NOTE: To type an equal sign and not have a formula, type a blank space first). You can download this from our class website as a template.

	A	В	С	D	E	F	G	Н	1	J
1	Pow	er Distribut	ion Problem (Example from Text	, 7.1)					
2										
3		Unit Cost								
4				City A	City B	City C	City D			
5			Plant 1	8	6	10	9			
6			Plant 2	9	12	13	7			
7			Plant 3	14	9	16	5			
8										
9										
10		Distribution								
11		(KwH)		City A	City B	City C	City D	Total Sent		Supply
12			Plant 1					=SUM(D12:G12)	=	35
13	1		Plant 2					=SUM(D13:G13)	=	50
14			Plant 3					=SUM(D14:G14)	=	40
15			Total Received	=SUM(D12:D14)	=SUM(E12:E14)	=SUM(F12:F14)	=SUM(G12:G14)			
16	1			=	=	=	=			Total Cost:
17			Demand	45	20	30	30			=SUMPRODUCT(D5:G7,D12:G14)

To set up the solver:

- We want to minimize cell J17
- The conditions are that the column sums (in cells D15 to G15) are equal to the demand (in cells D17 to G17), and the row sums (in cells H12-H14) are equal to the supply (in cells J12-14). All told, there are then 4+3=7 equality constraints.

The solver should give you the following result:

	A	В	C	D	E	F	G	Н	1	J
1	Pov	ver Distribut	tion Problem	(Example fr	om Text, 7.1)					
2										
3		Unit Cost								
4				City A	City B	City C	City D			
5			Plant 1	8	6	10	9			
6			Plant 2	9	12	13	7			
7			Plant 3	14	9	16	5			
8										
9										
10		Distribution								
11		(KwH)		City A	City B	City C	City D	Total Sent		Supply
12			Plant 1	0	10	25	0	35	=	35
13			Plant 2	45	0	5	0	50	=	50
14			Plant 3	0	10	0	30	40	=	40
15			Total Receive	45	20	30	30			
16				=	=	=	=			Total Cost:
17			Demand	45	20	30	30			1020
10									-	