Homework, 7.4

1. Given the optimal solution below, find Δ so that the current basis remains optimal, if we want to change c_{22} from 12 to $12 + \Delta$.

SOLUTION: Make the changes- Since c_{22} is not basic, the change is localized since the *u*'s and *v*'s don't change. The only other change is that the new value in the parentheses needs to be non-negative.

	$v_1 = 6$		$v_2 = 6$		$v_3 = 10$		$v_4 = 2$		Supply
		8		6		10		9	
$u_1 = 0$			10		25				35
		9		$12 + \Delta$		13		7	
$u_2 = 3$	45		$(3 + \Delta)$		5				50
		14		9		16		5	
$u_3 = 3$			10				30		40
Demand	45		20		30		30		125

From this we see that $\Delta > -3$.

2. Given the optimal solution below, find Δ so that the current basis remains optimal, if we want to change c_{32} from 9 to $9 + \Delta$. An extra table below is included, if you want to use it for your computations.

SOLUTION: Since the (3, 2) cell is basic, the *u*'s and *v*'s will need to be recomputed, which also means some of the the NBV cells also need recomputing.

	$v_1 = 6$	$v_2 = 6$	$v_3 = 10$	$v_4 = 2 - \Delta$	Supply
	8	6	10	9	
$u_1 = 0$	(2)	10	25	$(7 + \Delta)$	35
	9	12	13	7	
$u_2 = 3$	45	(3)	5	$(5 + \Delta)$	50
	14	$9 + \Delta$	16	5	
$u_3 = 3 + \Delta$	$(5-\overline{\Delta})$	10	$(3-\Delta)$	30	40
Demand	45	20	30	30	125

All together, we see $-5 < \Delta < 3$.

3. Given the optimal solution below, find the new optimal solution if we add Δ to Demand 2, Supply 3.

SOLUTION: Making this change just means that the value in cell (2,3) (which is basic), just increases by Δ . The basis stays optimal as long as the value in the cell stays non-negative, so $\Delta > -10$.

	$v_1 = 6$		$v_2 = 6$		$v_3 = 10$		$v_4 = 2$		Supply
		8		6		10		9	
$u_1 = 0$			10		25				35
		9		12		13		7	
$u_2 = 3$	45				5				50
		14		9		16		5	
$u_3 = 3$			$10+\Delta$				30		$40+\Delta$
Demand	45		$20+\Delta$		30		30		125

4. Given the optimal solution below, find the new optimal solution if we add Δ to Demand 4, Supply 2. Also compute the change in z. An extra table is below if you want to use it.

SOLUTION: By increasing cell (2, 4) from zero to Δ , we create a loop. We then need to incorporate Δ into the existing basic solution (See the loop after the table).

	$v_1 = 6$		$v_2 = 6$		$v_3 = 10$		$v_4 = 2$		Supply
		8		6		10		9	
$u_1 = 0$			$10+\Delta$		$25-\Delta$				35
		9		12		13		7	
$u_2 = 3$	45				$5+\Delta$				$50+\Delta$
		14		9		16		5	
$u_3 = 3$			$10-\Delta$				$30+\Delta$		40
Demand	45		20		30		$_{30+\Delta}$		125

Loop and result:

$$\begin{array}{c|c|c|c|c|c|c|c|c|} \hline 10 + \Delta & 25 - \Delta \\ \hline \hline & 5 + \Delta & \Delta - \Delta \\ \hline \hline 10 - \Delta & 30 + \Delta \end{array} \qquad \Rightarrow \qquad \Delta > 10$$