## Homework, 7.4

1. Given the optimal solution below, find $\Delta$ so that the current basis remains optimal, if we want to change $c_{22}$ from 12 to $12+\Delta$.
SOLUTION: Make the changes- Since $c_{22}$ is not basic, the change is localized since the $u$ 's and $v$ 's don't change. The only other change is that the new value in the parentheses needs to be non-negative.

|  | $v_{1}=6$ |  | $v_{2}=6$ |  | $v_{3}=10$ |  | $v_{4}=2$ |  | Supply |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 8 | $10 \begin{aligned} & 6 \\ & \\ & \end{aligned}$ |  |  | 10 |  | 9 | 35 |
| $u_{1}=0$ |  |  |  |  | 25 |  |  |  |  |
| $u_{2}=3$ | ${ }_{45}{ }^{9}$ |  | $\frac{12+\Delta}{(3+\Delta)}$ |  | ${ }_{5} 13$ |  |  | 7 | 50 |
|  |  |  |  |  |  |  |  |
|  |  | 14 |  |  |  | 9 |  | 16 |  | 5 |  |
| $u_{3}=3$ |  |  | 10 |  |  |  | 30 |  | 40 |
| Demand | 45 |  | 20 |  | 30 |  | 30 |  | 125 |

From this we see that $\Delta>-3$.
2. Given the optimal solution below, find $\Delta$ so that the current basis remains optimal, if we want to change $c_{32}$ from 9 to $9+\Delta$. An extra table below is included, if you want to use it for your computations.

SOLUTION: Since the $(3,2)$ cell is basic, the $u$ 's and $v$ 's will need to be recomputed, which also means some of the the NBV cells also need recomputing.

|  | $v_{1}=6$ | $v_{2}=6$ | $v_{3}=10$ | $v_{4}=2-\Delta$ | Supply |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $u_{1}=0$ | $8$ <br> (2) | $\square$ <br> 10 | $25$ | $\begin{array}{r} (7+\Delta) \end{array}$ | 35 |
| $u_{2}=3$ | ${ }_{45}$ | $\qquad$ | $5_{5}$ | $(5+\Delta)$ | 50 |
| $u_{3}=3+\Delta$ | $\frac{14}{(5-\Delta)}$ | $10$ | $\frac{16}{(3-\Delta)}$ | 3 | 40 |
| Demand | 45 | 20 | 30 | 30 | 125 |

All together, we see $-5<\Delta<3$.
3. Given the optimal solution below, find the new optimal solution if we add $\Delta$ to Demand 2 , Supply 3.

SOLUTION: Making this change just means that the value in cell $(2,3)$ (which is basic), just increases by $\Delta$. The basis stays optimal as long as the value in the cell stays non-negative, so $\Delta>-10$.

|  | $v_{1}=6$ |  | $v_{2}=6$ |  | $v_{3}=10$ |  | $v_{4}=2$ |  | Supply |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 8 | 10 |  | ${ }_{25}{ }^{10}$ |  |  | 9 | 35 |
| $u_{1}=0$ |  |  |  |  |  |  |  |
|  | ${ }_{45}{ }_{4}$ |  |  | 12 |  |  | ${ }_{5}{ }^{13}$ |  |  | 7 | 50 |
| $u_{2}=3$ |  |  |  |  |  |  |  |  |  |  |
|  |  | 14 | $\underset{10+\Delta}{ }{ }^{9}$ |  |  | 16 | 30 |  |  |  |
| $u_{3}=3$ |  |  |  |  |  |  |  |  | $40+\Delta$ |  |
| Demand | 45 |  | $20+\Delta$ |  | 30 |  | 30 |  | 125 |  |

4. Given the optimal solution below, find the new optimal solution if we add $\Delta$ to Demand 4 , Supply 2. Also compute the change in $z$. An extra table is below if you want to use it.

SOLUTION: By increasing cell $(2,4)$ from zero to $\Delta$, we create a loop. We then need to incorporate $\Delta$ into the existing basic solution (See the loop after the table).

|  | $v_{1}=6$ |  | $v_{2}=6$ |  | $v_{3}=10$ |  | $v_{4}=2$ |  | Supply |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 8 | $\underset{10+\Delta}{ }$ |  | $25-\Delta$ |  |  | 9 |  |
| $u_{1}=0$ |  |  |  |  |  |  | 35 |
| $u_{2}=3$ | ${ }_{45}$ |  |  | 12 |  |  | $5+\Delta$ |  |  | 7 | $50+\Delta$ |
|  |  |  |  |  |  |  |  |  |  |
|  |  | 14 | 10- ${ }^{\text {a }}$ |  |  | 16 | $3{ }^{\text {a }}$ |  |  |  |
| $u_{3}=3$ |  |  |  |  |  |  |  |  | 40 |  |
| Demand | 45 |  | 20 |  | 30 |  | $30+\Delta$ |  | 125 |  |

Loop and result:

| $10+\Delta$ | $25-\Delta$ |  |
| :--- | ---: | :--- |
|  | $5+\Delta$ | $\Delta-\Delta$ |
| $10-\Delta$ |  | $30+\Delta$ |$\quad \Rightarrow \quad \Delta>10$

