Review Material for Ch 6

- 1. Prove the weak duality theorem: For any **x** feasible for the primal and **y** feasible for the dual, then... HINT: Put the primal and dual in normal form. Consider the quantity $\mathbf{y}^T A \mathbf{x}$, given the constraints.
- 2. Show that the solution to the dual is $\mathbf{y} = (\mathbf{c}_B^T B^{-1})^T$ (if the primal and dual are both feasible) by following the steps below. You may assume that the primal and dual are in normal form.
 - Show that **y** is feasible for the dual.
 - Show that z = w if we use this formula for **y**.
- 3. Use the simplex algorithm to get a tableau that is suitable for the dual simplex algorithm. In doing so, show that the problem is infeasible, but the dual is feasible.

min
$$z = -3x_1 + x_2$$

st $x_1 - 2x_2 \ge 2$
 $-x_1 + x_2 \ge 3$
 $x_1, x_2 \ge 0$

4. Consider the LP and the optimal tableau with missing Row 0 and missing optimal RHS (assume big-M).

$\max z =$	$3x_1 + x_2$	x_1	x_2	s_1	e_2	a_2	a_3	rhs
s.t.	$2x_1 + x_2 \le 4$							
	$3x_1 + 2x_2 \ge 6$	0	0	1	0	0	-1/2	
	$4x_1 + 2x_2 = 7$	0	1	0	-2	2	-3/2	
	$x_1, x_2 \ge 0$	1	0	0	1	-1	1	

Find Row 0 and the RHS for the optimal tableau (without performing row reductions!)

- 5. Give an argument why, if the primal is unbounded, then the dual must be infeasible.
- 6. In solving the following LP, we obtain the optimal tableau shown:

$\max z =$	$6x_1 + x_2$		x_1	x_2	s_1	s_2	rhs
st	$x_1 + x_2 \le 5$	_	0	2	0	3	18
	$2x_1 + x_2 \le 6$	\Rightarrow	0	1/2	1	-1/2	2
	$x_1, x_2 \ge 0$		1	1/2	0	1/2	3

- (a) If we add a new constraint, is it possible that we can increase z? Why or why not?
- (b) If we add the constraint $3x_1 + x_2 \leq 10$, is the current basis still optimal?

m

- (c) If we add the constraint $x_1 x_2 \ge 6$, we can quickly see that the optimal solution changes. Find out if we have a new optimal solution or if we have made the problem infeasible.
- (d) Same question as the last one, but let's change the constraint to $8x_1 + x_2 \le 12$.
- (e) If I add a new variable x_3 so that:

$$\max z = 6x_{1} + x_{2} + x_{3}$$

st $x_{1} + x_{2} + 2x_{3} \le 5$
 $2x_{1} + x_{2} + x_{3} \le 6$
 $x_{1}, x_{2} \ge 0$

Does the current basis stay optimal? Answer two ways- One using the optimal tableau, and the second using the dual.

7. Solve the following "mixed constraint" problem using a combination of the simplex and the dual simplex.

- 8. The Complementary Slackness Theorem says, among other things, that $s_j y_j = 0$. If $s_j > 0$, why should $y_j = 0$? (Explain in words)
- 9. Be able to prove that each of our "shortcut formulas" for sensitivity analysis works.
 - Change in a NBV
 - Change in a BV
 - Change in RHS
 - Change in a column corresponding to a NBV.
 - Adding a new "activity" (column).

10. Consider the LP below:

\max	z =	$2x_1$	$+2x_{2}$			
	st	x_1		$+x_{3}$	$+x_4$	≤ 1
			x_2	$+x_{3}$	$-x_4$	≤ 1
		x_1	$+x_{2}$	$+2x_{3}$		≤ 3
x	> 0					

- (a) Write out the dual.
- (b) Show that $\mathbf{x}^* = [1, 1, 0, 0]^T$ and $\mathbf{y}^* = [1, 1, 1]^T$ are feasible for the original and dual problems, respectively.
- (c) Show that for this pair of solutions, if $x_j^* > 0$ then the corresponding slack in the dual is 0.
- (d) Show that \mathbf{y}^* is not an optimal solution to the dual.
- (e) Does this contradict the Complementary Slackness Theorem?
- 11. Prove or disprove using Complementary Slackness: The point $\mathbf{x} = [0, 3, 0, 0, 4]^T$ is an optimal solution to the LP:

Questions from the Chapter 6 Review:

3, 4 (except 4(b)), 6, 9, 10, 16, 17, 18, 20, 23 (very much the same as 16), 33, 34.

Questions from the Chapter 7 Review:

 $1,\,3,\,5,\,8\text{-}11,\,15\text{-}16,\,23$