x_1	<i>x</i> 2 -5	<i>s</i> ₁	<i>s</i> ₂	s 3	rhs
-3	-5	0	0	0	0
1	0	1	0	0	
0	2	0	1	0	12
3	2	0	0	1	18

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Write the dual:

x_1	<i>x</i> 2 -5	s_1	<i>s</i> ₂	s 3	rhs
-3	-5	0	0	0	0
1	0	1	0	0	4
0	2	0	1	0	12
3	2	0	0	1	18

Write the dual:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

x_1	<i>x</i> 2 -5	<i>s</i> ₁	<i>s</i> ₂	s 3	rhs
-3	-5	0	0	0	0
1	0	1	0	0	
0	2	0	1	0	12
3	2	0	0	1	18

The current basis is:

x_1	<i>x</i> ₂ -5	<i>s</i> ₁	s 2	s 3	rhs
-3	-5	0	0	0	0
1	0		0	0	4
0	2	0	1	0	12
3	2	0	0	1	18

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

The current basis is: $\mathcal{B} = \{s_1, s_2, s_3\}$ Given that, c_B^T

x_1	<i>x</i> ₂ -5	<i>s</i> ₁	<i>s</i> ₂	s 3	rhs
-3	-5	0	0	0	0
1	0	1	0	0	4
0	2	0	1	0	12
3	2	0	0	1	18

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The current basis is: $\mathcal{B} = \{s_1, s_2, s_3\}$ Given that, $c_B^T = [0, 0, 0]$ so that the dual: $y^T =$

x_1	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	s 3	rhs 0
-3	-5	0	0	0	0
1	0		0	0	4
0	2	0	1	0	12
3	2	0	0	1	18

The current basis is: $\mathcal{B} = \{s_1, s_2, s_3\}$ Given that, $c_B^T = [0, 0, 0]$ so that the dual: $y^T = c_B^T B^{-1} = [0, 0, 0]$ And the excess variables: $-e_1 = 3 - y_1 - 3y_3$

x_1	<i>x</i> ₂ -5	<i>s</i> 1	s 2	s 3	rhs
1	0 2 2	1	0	0	4
0	2	0	1	0	12
3	2	0	0	1	18

The current basis is:
$$\mathcal{B} = \{s_1, s_2, s_3\}$$

Given that, $c_B^T = [0, 0, 0]$
so that the dual: $y^T = c_B^T B^{-1} = [0, 0, 0]$
And the excess variables: $-e_1 = 3 - y_1 - 3y_3 = 3$, or $e_1 = -3$
Similarly, $-e_2 = 5 - y_2 - 2y_3$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

x_1	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	s 3	rhs 0
-3	-5	0	0	0	0
1	0		0	0	4
0	2	0	1	0	12
3	2	0	0	1	18

The current basis is: $\mathcal{B} = \{s_1, s_2, s_3\}$ Given that, $c_B^T = [0, 0, 0]$ so that the dual: $y^T = c_B^T B^{-1} = [0, 0, 0]$ And the excess variables: $-e_1 = 3 - y_1 - 3y_3 = 3$, or $e_1 = -3$ Similarly, $-e_2 = 5 - y_2 - 2y_3$, or $e_2 = -5$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

x_1	<i>x</i> 2 -5	<i>s</i> ₁	<i>s</i> ₂	s 3	rhs
-3	-5	0	0	0	0
1	0		0	-	4
0	2	0	1	0	12
3	2	0	0	1	18

This means that we have the following

x_1	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3			e_2			
0	0	4	12	18	_	3	-5	0	0	0

(ロ)、(型)、(E)、(E)、 E) の(()

x_1	<i>x</i> 2 -5	s_1	s 2	s 3	rhs
-3	-5	-	-	0	0
1	0		0	0	4
0	2	0	1	0	12
3	2	0	0	1	18

This means that we have the following

			<i>s</i> ₂			e_2			
0	0	4	12	18	-3	-5	0	0	0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

The solution to the primal is feasible, to the dual is infeasible.

x_1	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	s 3	rhs 0
-3	-5	0	0	0	0
1	0	1	0	0	4
0	2	0	1	0	12
3	2	0	0	1	18

This means that we have the following

<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3	e_1	e_2	<i>y</i> 1	<i>Y</i> 2	<i>y</i> 3
0	0	4	12	18	-3	-5	0	0	0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The solution to the primal is feasible, to the dual is infeasible. Note where the zeros appear in each solution...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solve the primal and the dual:

$$x_1$$
 x_2 s_1 s_2 s_3

Solve the primal and the dual:

Solve the primal and the dual:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solve the primal and the dual:

x_1	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3		e_2			
6	0	-2	12	0	0	-3	0	0	1

Feasibility?

Solve the primal and the dual:

x_1	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3	e_1	e_2	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3
6	0	-2	12	0	0	-3	0	0	1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Feasibility?

The primal x is not feasible, the dual y is not feasible.

New basis: $B = \{x_1, x_2, s_3\}.$

x_1	<i>x</i> ₂	<i>s</i> ₂	<i>s</i> ₂	s 3	rhs
0	0	3	<i>s</i> ₂ 5/2	0	42
1	0	1	0	0	4
0	1	0	1/2	0	6
0	0	-3	0 1/2 -1	1	-6

$$y^{T} = [3, 5/2, 0]^{T}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

The solutions to primal and dual are:

$x_1 x_2$	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃			-	<i>y</i> ₂	
4 6	0	0	-6	0	0	3	5/2	0

Feasibility?

New basis: $B = \{x_1, x_2, s_3\}.$

x_1	<i>x</i> ₂	<i>s</i> ₂	<i>s</i> ₂	s 3	rhs	
0	0	3	5/2	0	42	
1	0	1	0	0	4	$y^T = [3, 5/2, 0]^T$
0	1	0	1/2	0	6	
0	0	-3	-1	1	-6	

The solutions to primal and dual are:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Feasibility?

The primal is infeasible, the dual is feasible.

Final basis: $\mathcal{B} = \{x_1, x_2, s_1\}$

Solutions to the primal, dual are:

x_1								<i>y</i> ₂	
2	6	2	0	0	0	0	0	3/2	1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Feasibility?

Final basis: $\mathcal{B} = \{x_1, x_2, s_1\}$

x_1	<i>x</i> ₂	<i>s</i> ₂	<i>s</i> ₂	<i>s</i> ₃	rhs	
0	0	0	3/2	1	36	
1	0	0	-1/3	1/3	2	$y^T = [0, 3/2, 1]^T$
0	1	0	1/2	0	6	
0	0	1	1/3	-1/3	2	

Solutions to the primal, dual are:

x_1								<i>y</i> ₂	
2	6	2	0	0	0	0	0	3/2	1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Feasibility?

Both the primal and dual are feasible (so optimal).