1. Does the sequence $a_{n}=\cos (n \pi)$ converge? What about the sequence $b_{n}=\cos (2 n \pi)$?
2. What is the $13^{\text {th }}$ partial sum of the series $\sum_{n=1}^{\infty} 2^{n}$?
3. Determine whether the following series converge absolutely, converge conditionally, or diverge. Justify your answers by using the appropriate tests.
(a)

$$
\sum_{n=2}^{\infty} \frac{n}{1-n^{2}}
$$

(b)

$$
\sum_{n=1}^{\infty} \frac{2 n}{\sqrt{2+n^{5}}}
$$

(c)

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n^{3}}{n+n^{4}}
$$

(d)

$$
\sum_{n=1}^{\infty} \frac{3^{n}(n!)^{2}}{(2 n)!}
$$

(e)

$$
\sum_{n=1}^{\infty}\left(\frac{n+1}{n^{2}}\right)^{2 n}
$$

4. For which x does the series $\sum_{n=1}^{\infty} \frac{x^{n}(n!)^{2}}{(2 n)!}$. Be careful to check your endpoints!!
5. Determine a series for $f(x)=\arctan \left(x^{2}\right)$, and find its radius of convergence.
6. Find a series and its radius of convergence for

$$
f(x)=\int_{0}^{t} \frac{\sin (t)}{t} d t
$$

Also, find $f(.5)$ correct to three decimal places.

