1. (a) Suppose that

$$
f(x)=\int_{2}^{x} \cot \left(t^{3}\right)+2 t d t
$$

Find $f^{\prime}(x)$.
(b) Find $f^{\prime}(x)$ if

$$
f(x)=\int_{2}^{x^{2}} \cot \left(t^{3}\right)+2 t d t
$$

2. (a) Find

$$
\int_{3}^{10} \frac{x}{x^{2}-4} d x
$$

(b) Discuss

$$
\int_{-1}^{1} \frac{x}{x^{2}-4} d x
$$

(c) Discuss

$$
\int_{0}^{5} \frac{x}{x^{2}-4} d x
$$

(d) Discuss

$$
\int_{4}^{\infty} \frac{x}{x^{2}-4} d x
$$

(e) Discuss

$$
\int_{4}^{\infty} \frac{x}{\left(x^{2}-4\right)^{2}} d x
$$

3. Consider the area under the curve $y=x e^{x}$ for $0 \leq x \leq 1$.
(a) Set up the integral that gives this area.
(b) Set up the integral that gives the volume when this area is revolved around the x-axis.
(c) Set up the integral that gives the volume when this area is revolved around the y-axis.
(d) Set up the integral that gives the volume when this area is revolved around the line $x=1$.
(e) Set up the integral that gives the volume when this area is revolved around the line $y=-2$.
4. Determine the following integrals
(a)

$$
\int\left(x^{2}+1\right) e^{-x} d x
$$

(b)

$$
\int \cos ^{2}(x) \tan ^{3}(x) d x
$$

(c)

$$
\int \frac{t^{5}}{\sqrt{t^{2}+1}} d t
$$

(d)

$$
\int \frac{x-6}{x^{2}+4 x+3} d x
$$

(e)

$$
\int \frac{\sqrt{x-4}}{x} d x
$$

$$
\begin{equation*}
\int \frac{\arctan \sqrt{x}}{\sqrt{x}} d x \tag{f}
\end{equation*}
$$

5. Set up the integral to compute the length of one period of the curve $y=\sin x$. Also, set up the integral to compute the surface area of the solid generated by revolving this curve about the x-axis.
6. Define a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ by $a_{1}=1$ and $a_{n}=a_{n-1}^{2}-1$. What are the first six terms of the sequence? Does the sequence approach a limit? If so what? If we define $b_{n}=a_{n}^{n}$, does the series $\sum_{n=1}^{\infty} b_{n}$ converge?
7. Determine the convergence or divergence of the following series.
(a)

$$
\sum_{n=1}^{\infty} \frac{n^{2}-1}{2-n^{3}}
$$

(b)

$$
\sum_{n=1}^{\infty} \ln \left(\frac{2 n}{n-3}\right)
$$

(c)

$$
\sum_{n=1}^{\infty} \frac{n^{2 n}}{\left(1+2 n^{2}\right)^{n}}
$$

(d)

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} n+1}{2 n^{2}+1}
$$

(e)

$$
\sum_{n=1}^{\infty} \frac{n^{n}}{(2 n)!}
$$

(f)

$$
\sum_{n=1}^{\infty} \frac{3^{n}}{4^{n}+5^{n}}
$$

8. Determine

$$
\int \frac{e^{x}}{x} d x \text { and } \int \frac{e^{-x}}{x} d x
$$

by using series.
9. Determine c so that

$$
f(x)= \begin{cases}\frac{c}{x^{2}} & x>2 \\ 0 & x<2\end{cases}
$$

is a probability density function.
10. Find the center of mass of a plate in the shape of the area under the curve $y=\sin 2 x$ of density ρ, between $x=0$ and $x=\frac{\pi}{2}$.
11. Snow is falling on the ground at the rate of 4 inches/minute. It is melting at a rate of 75% How much snow is on the ground after 5 hours? How much snow remains on the ground if it continues to snow indefinitely?

