
1. (a) Suppose that

f(x) =

∫ x

2

cot(t3) + 2t dt

Find f ′(x).

SOLUTION: This is an application of the Fundamental Theorem of
Calculus.

∫ x

2
cot(t3) + 2t dt = F (x)− F (2) where F is an antiderivative

of cot(t3) + 2t. Differentiating the integral with respect to x gives

d

dx

∫ x

2

cot(t3) + 2t dt = cot(x3) + 2x;

differentiation will eliminate the F (2), as it is constant.

(b) Find f ′(x) if

f(x) =

∫ x2

2

cot(t3) + 2t dt

SOLUTION: This is the same as part (a), only now we need to use the
chain rule since we’re differentiating F (x2)− F (2), in this case

d

dx

∫ x2

2

cot(t3) + 2t dt = (cot(x6) + 2x2) · 2x

2. (a) Find ∫ 10

3

x

x2 − 4
dx

SOLUTION: This is a straightforward u-substitution. (Note that in-
tegration by partial fractions works as well, but is much ickier). Let
u = x2 − 4, du = 2xdx, ll = 32 − 4 = 5, ul = 102 − 4 = 96. Thus∫ 10

3

x

x2 − 4
dx =

1

2

∫ 96

5

du

u
=

1

2
ln(u)|965 =

1

2
(ln(96)− ln(5))

(b) Discuss ∫ 1

−1

x

x2 − 4
dx

SOLUTION: The function being integrated is the quotient of an odd
function and an even function and, hence, is odd (check that f(−x) =
−f(x)). Since it is odd, and the bounds are from 1 to -1, the integral
equals 0.

(c) Discuss ∫ 5

0

x

x2 − 4
dx
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SOLUTION: The interval of integration includes the value x = 2, for
which the function is not defined. Hence, the integral is improper and
needs to be split at 2. We split it as

lim
b→2−

∫ 2

0

x

x2 − 4
dx + lim

b→2+

∫ 5

b

x

x2 − 4
dx

We can show that each of these integrals does not approach a limit as x
gets close to 2, hence, these integrals do not exist.

(d) Discuss ∫ ∞

4

x

x2 − 4
dx

SOLUTION: Another improper integral. Observe that x
x2−4

> 1
x

lim
b→∞

∫ b

4

x

x2 − 4
dx > lim

b→∞

∫ b

4

1

x
dx

The integral on the right is divergent, hence so is the one on the left.

(e) Discuss ∫ ∞

4

x

(x2 − 4)2
dx

SOLUTION: We expect this one to converge, since it behaves roughly
the same as 1

x3 , whose integral converges on the region [4,∞). We can
prove this one by a direct computation using a u-substitution (u = x2−4).

lim
b→∞

∫ b

4

x

(x2 − 4)2
dx = lim

b→∞

1

2

∫ b2−4

12

du

u2

= lim
b→∞

−1

b2 − 4
+

1

12
=

1

12

Thus, the integral converges.

3. Consider the area under the curve y = xex for 0 ≤ x ≤ 1.

(a) Set up the integral that gives this area.

SOLUTION:

A =

∫ b

a

f(x) dx =

∫ 1

0

xex dx

(b) Set up the integral that gives the volume when this area is revolved around the
x-axis.

SOLUTION: Discs:

V =

∫ b

a

π(f(x))2 dx =

∫ 1

0

πx2e2x dx
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(c) Set up the integral that gives the volume when this area is revolved around the
y-axis.

SOLUTION: Shells

V =

∫ b

a

2πxf(x) dx =

∫ 1

0

2πx2ex dx

(d) Set up the integral that gives the volume when this area is revolved around the
line x = 1.

SOLUTION: Shells, this time with a different radius:

V =

∫ b

a

2π(1− x)f(x) dx =

∫ 1

0

2π(1− x)xex dx

(e) Set up the integral that gives the volume when this area is revolved around the
line y = −2.

SOLUTION: Washers:

V =

∫ b

a

π(R2
o −R2

i ) dx =

∫ 1

0

(2 + xex)2 − 4 dx

4. Determine the following integrals

(a) ∫
(x2 + 1)e−x dx

SOLUTION: Integration by parts, twice. Let u = x2 + 1, dv = e−x dx.
Then du = 2x dx, v = −e−x, and∫

(x2 + 1)e−x dx = −(x2 + 1)(e−x) +

∫
(2x)e−x dx

Parts again for the second integral, u = 2x, dv = e−x dx, giving du =
2 dx and v = −e−x.∫

(2x)e−x dx = −2xe−x +

∫
2e−x

∫
(x2 + 1)e−x dx = −(x2 + 1)(e−x)− 2xe−x − 2e−x + C

(b) ∫
cos2(x) tan3(x) dx
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SOLUTION: Rewrite the integrand as cos2(x) sin3(x)
cos3(x)

. Thus∫
cos3(x) tan3(x) dx =

∫
sin3(x)

cos(x)
dx =

∫
1− cos2(x)

cos(x)
sin(x) dx,

in which we make the substitution u = cos x, giving

−
∫

1− u2

u
du = −

∫
1

u
−u du = − ln |u|+u2

2
+C =

cos2(x)

2
−ln |cos(x)|+C

(c) ∫
t5√

t2 + 1
dt

SOLUTION: Since we have the term
√

t2 + 1, we want to make a sub-
stitution of the form t = tan(θ). Then dt = sec2(θ) dθ, and the integral
becomes ∫

t5√
t2 + 1

dt =

∫
tan5(θ)√

tan2(θ) + 1
sec2(θ) dθ

=

∫
tan5(θ)sec2(θ)

sec(θ)
dθ =

∫
tan5(θ) sec(θ) dθ.

We want to lay off a sec(θ) tan(θ) and use identities to write tan4(θ) =
(sec2(θ)− 1)2, which, with the substitution u = sec(θ) will give∫

tan5(θ) sec(θ) dθ =

∫
(sec2(θ)−1)2 sec(θ) tan(θ) dθ =

∫
(u2−1)2 du =

u5

5
−2u3

3
+u+C

Going back and rewriting everything in terms of our original variables
gives:

u5

5
−2u3

3
+u+C =

sec5(θ)

5
−2 sec3(θ)

3
+sec(θ)+C =

(t2 + 1)
5
2

5
−2(t2 + 1)

3
2

3
+
√

t2 + 1+C

whew.

(d) ∫
x− 6

x2 + 4x + 3
dx

SOLUTION: Straight Partial Fractions. The denominator factors as
(x + 1)(x + 3), and so∫

x− 6

x2 + 4x + 3
dx =

∫
A

x + 1
+

B

x + 3
dx

Crossmultiplying terms will give A = −7
2

and B = 9
2
, so∫

x− 6

x2 + 4x + 3
dx =

−7

2
ln |x + 1|+ 9

2
ln |x + 3|+ C
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(e) ∫ √
x− 4

x
dx

SOLUTION: This one requires a rationalizing substitution. Let u =√
x− 4, then x = u2 + 4 and dx = 2u du. Then∫ √

x− 4

x
dx =

∫
2u2

u2 + 4
du = 2

∫
u2 + 4− 4

u2 + 4
du

= 2

∫
1− 4

u2 + 4
+C du = 2(u−2 arctan(

u

2
)) = 2

√
x− 4−4 arctan(

√
x− 4

2
)+C

(f) ∫
arctan

√
x√

x
dx

SOLUTION: This one is an integration by parts with a u substitution
thrown in. First, substitute u =

√
x and du = 1

2sqrtx
dx. Then∫

arctan
√

x√
x

dx =
1

2

∫
arctan u du

We can integrate by parts to find the antiderivative of arctan(x), or we
can recall it from the table of integrals.

1

2

∫
arctan u du =

1

2
(u arctan u− 1

2
ln u2 + 1) + C

=
1

2

√
x arctan

√
x− 1

4
ln |x|+ 1 + C

5. Set up the integral to compute the length of one period of the curve y = sin x. Also,
set up the integral to compute the surface area of the solid generated by revolving this
curve about the x-axis.

SOLUTION:

ArcLength =

∫ b

a

√
1 + (f ′(x))2 dx =

∫ π

0

√
1 + cos2(x) dx

SurfaceArea =

∫ b

a

2πx
√

1 + (f ′(x))2 dx =

∫ π

0

2πx
√

1 + cos2(x) dx

6. Define a sequence {an}∞n=1 by a1 = 1 and an = a2
n−1−1. What are the first six terms of

the sequence? Does the sequence approach a limit? If so what? If we define bn = an
n,

does the series
∑∞

n=1 bn converge?
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SOLUTION:

a1 = 1, a2 = 0, a3 = −1, a4 = 0, a5 = −1, a6 = 0

The sequence does not approach a limit. If we raise the nth term to the nth
power, then the series does not converge. This relation is very dependent on
the initial condition.

7. Determine the convergence or divergence of the following series.

(a)
∞∑

n=1

n2 − 1

2− n3

SOLUTION: This series behaves like
∑

1
n
, so, by the limit comparison

test, the series diverges.

(b)
∞∑

n=1

ln

(
2n

n− 3

)
SOLUTION: (Note: Apologies on the limits. Treat the problem as
though they made sense) As n gets large, 2n

n−3
approaches 2. Thus, the

terms in the series are approaching ln 2. Since the terms do not approach
zero, the series automatically Diverges.

(c)
∞∑

n=1

n2n

(1 + 2n2)n

SOLUTION: Using the root test, we see that the nth root of an is
n2

1+2n2 . As n gets large, the root approaches 1
2
, which is less than 1, thus

the series converges absolutely.

(d)
∞∑

n=1

(−1)nn + 1

2n2 + 1

SOLUTION: The series, after splitting the numerator, becomes two
series. The second of these series,

∑
1

2n2+1
converges absolutely by the

p-series test. The first of these,
∑ (−1)nn

2n2+1
behaves like

∑ (−1)n

n
, which

converges conditionally. Hence, the whole series converges conditionally.

(e)
∞∑

n=1

nn

(2n)!
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SOLUTION: This one will use the ratio test. Taking

lim
n→∞

|an+1

an

| = lim
n→∞

(n + 1)n+1

(2n + 2)!
·(2n)!

nn
= lim

n→∞

(
n + 1

n

)n
n + 1

(2n + 2)(2n + 1)
= e·0 = 0

Thus, the series converges.

(f)
∞∑

n=1

3n

4n + 5n

SOLUTION: The 5n term will dominate the denominator, hence this
series behaves like

∑(
3
5

)n
, which is geometric, with ratio less than one,

thus it converges. Note that in doing the limit comparison test, life is
much easier if you set

(
3
5

)n
= an and 3n

4n+5n = bn

8. Determine ∫
ex

x
dx and

∫
e−x

x
dx

by using series.

SOLUTION: Recall that the series for ex is
∑∞

n=0
xn

n!
. Hence, the first

integral will be found by integrating
∑∞

n=0
xn−1

n!
, and so the integral will be

ln |x|+
∑∞

n=1
xn

n·n!
, or∫

ex

x
dx = ln |x|+ x +

x2

2 · 2!
+

x3

3 · 3!
+ . . .

.

To get the corresponding series for e−x, one can just replace x with −x in
the first solution.

9. Determine c so that

f(x) =

{
c
x2 x > 2
0 x < 2

is a probability density function.

SOLUTION: For f(x) to be a probability distribution function, its integral
over the entire real line must be 1. Thus

1 =

∫ ∞

−∞
f(x) dx =

∫ ∞

2

c

x2
dx = lim

b→infty

−c

x
|b2 =

c

2
.

Therefore, c = 2.

10. Find the center of mass of a plate in the shape of the area under the curve y = sin 2x
of density ρ, between x = 0 and x = π

2
.
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SOLUTION: The plate is symmetric about the line x = π
4
, so x = π

4
. We

need to calculate the moment about the x-axis, and divide by the mass in
order to get y.

y =
Mx

m
=

ρ
2

∫ π
2

0
sin2(2x) dx

ρ
∫ π

2

0
sin(2x) dx

=
π

8

We expect this to be a bit less than 1
2

due to the nature of the shape of the
plate, and it is.

11. Snow is falling on the ground at the rate of 4 inches/minute. It is melting at a rate of
75% How much snow is on the ground after 5 hours? How much snow remains on the
ground if it continues to snow indefinitely?

SOLUTION: Let S(t) be the amount of snow on the ground at time t.
Then S is modeled by

dS

dt
= 4− .75S

Solving for S gives S = Be−.75t + 16
3
, with B = −16

3
when t = 0. When t = 5,

there is 5.208 inches of snow on the ground. Long term, there is 16
3

inches of
snow on the ground.
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