Solution to Number 7:

Divide the job up into horizontal slices, each slice will be a circular cylinder. Each cylinder has volume $\pi r^{2} h$. Let x be the distance from the bottom of the tank to the cylindrical slice. Then, by similar triangles, each slice has radius equal to $\frac{1}{3} x$, and volume equal to $\pi \frac{1}{9} x^{2} d x$. The force is obtained by multiplying the volume by the density by the acceleration due to gravity, giving $9800 \pi \frac{1}{9} x^{2} d x$. The amount of work done in moving this slice is equal to the force times the distance that it is moved, or $9800 \pi \frac{1}{9} x^{2}(30-x) d x$. The x values will range from 0 to 25 , giving the solution

$$
W=\int_{0}^{25} 9800 \pi \frac{1}{9} x^{2}(30-x) d x
$$

If the figure were a pyramid with a square base, the slices would be square prisms, each with side length $\frac{1}{3} x$. Hence,

$$
W=\int_{0}^{25} 9800 \frac{1}{9} x^{2}(30-x) d x
$$

