This is an amended version of last year's exam (it reflects what we have done in class so far). I have also attached some more practice problems.
-Prof Balof

Math 126: Calculus 2 Exam the First

You have the class period to complete this closed-book-closed-notes-closed-colleague exam. Please read the statement below and sign it when you are finished.

I have not used my calculator on this examination except for arithmetic, trigonometric, logarithmic, and exponential functions. I certify that the work on this exam is my own and that I have not discussed the contents of this exam with anyone prior to my taking it.

Signature:

1. (10 points) What is the formula for $\int_{a}^{b} f(x) d x$ in terms of Riemann Sums? Be as explicit as possible in stating the formula.
2. (16 points) Find the area under the line $y=2 x+3$ between $x=1$ and $x=4$ using
(a) Geometry.
(b) Calculus.
3. Solve the following. (8 points each)
(a) $\int \frac{x^{3}+1}{x^{2}} d x$
(b) $\int(x+3) \cos \left(x^{2}+6 x+5\right) d x$
(c) $\int_{0}^{a} \frac{x d x}{\sqrt{1-x^{2}}} d x$. What are the restrictions on a ?
4. Consider the area under the curve $y=e^{x}$ between $x=0$ and $x=\ln 3$
(a) (10 points) Find c such that the line $x=c$ bisects this area. Is c greater than, less than, or equal to $\frac{1}{2} \ln 3$? Explain graphically.
(b) (8 points each) Compute the volume generated by revolving this area about
i. the x axis. (solve this integral...)
ii. the y axis. (...but not this one.)
5. Find the ratio of area above the x axis to area below the x axis of the curve $y=x^{3}-9 x$
6. If we know that $\int_{-a}^{a} x^{3} f(x) d x=0$ for all values of a, what kind of function is $f(x)$? Explain.
