Fall 2004 Math 126: Exam the Second

You have the class period to complete this closed-book-closed-notes-closed-colleague exam. Please read the statement below and sign it when you are finished.

I have not used my calculator on this examination except for arithmetic, trigonometric, logarithmic, and exponential functions. I certify that the work on this exam is my own and that I have not discussed the contents of this exam with anyone prior to my taking it.

Signature:

1. Find the volume of the solid generated when the region bounded by the curve $y=x \ln x$ between $x=2$ and $x=5$ is rotated about the y axis. (Hint: You'll want to use shells rather than solving for y. I'll 'sell' you the formula for shells if you need it.)
2. For each of the following (a-f), give specific strategies for integration. Then solve any three of the integrals. Please clearly indicate which three you've intended to solve.
(a)

$$
\int \frac{2 x}{x^{2}-4 x+3} d x
$$

(b)

$$
\int \sec ^{3}(x) \tan ^{3}(x) d x
$$

(c)

$$
\int \frac{x-1}{\sqrt{1-x^{2}}} d x
$$

(d)

$$
\int \frac{\sqrt{x}-1}{\sqrt{x}+1} d x
$$

(e)

$$
\int \frac{\ln x}{\sqrt{x}} d x
$$

(f)

$$
\int e^{2 x} \cos (2 x) d x
$$

3. Find

$$
\int_{\sqrt{3}}^{\infty} \frac{2}{1+x^{2}}
$$

if it exists. Use this result to determine whether

$$
\int_{\sqrt{3}}^{\infty} \frac{e^{-x}}{1+x^{2}}
$$

converges or diverges.
4. Use the arc length formula to prove that the circumference of a circle of radius 1 is 2π.

1. Let $f(x)=\sqrt{x} e^{x}$. Determine the volume of the solid generated by revolving the area under $f(x)$ between $x=1$ and $x=5$ about the x axis.
2. Prove the formula for the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, Area $=\pi a b$.
3. Determine

$$
\int \cos ^{3}(x) d x
$$

4. Determine

$$
\int \frac{2 x+1}{x^{3}+x^{2}} d x
$$

5. Determine

$$
\int x \arctan x d x
$$

6. Give strategies for each of the following integrals. In each case, state the methods and any substitutions you would use.
(a)

$$
\int \frac{x^{2}+x}{x+2} d x
$$

(b)

$$
\int \frac{x^{2}}{\left(4-x^{2}\right)^{3 / 2}} d x
$$

(c)

$$
\int \frac{\sec ^{6}(2 x)}{\tan ^{2}(2 x)} d x
$$

7. Determine

$$
\int_{2}^{\infty} \frac{1}{x^{2}-1} d x
$$

8. Use the comparison test to determine whether

$$
\int_{3}^{\infty} \frac{1}{x \cos x} d x
$$

converges or diverges.
9. Set up, but do not evaluate, the integrals necessary to determine the arc length and the surface area of the curve and solid in problem 1 , and of the curve in problem 2.

