Math 225: Exam the First

Spring 2008

You have two hours to complete this exam. You may use a calculator for computation only, and you should be prepared to show the relevant steps to a problem where necessary.

- 1. (a) Give the equation, in rectangular coordinates, of the cylinder of radius 6 centered around the z-axis.
 - (b) Give the equation, in rectangular coordinates, of the cylinder of radius 6 centered around the *y*-axis.
 - (c) Find, in parametric form, the equation of the curve of intersection of the cylinder in part (b) with the plane y + 4z = 3, and describe the curve.
- 2. Let ℓ_1 be the line through the two points (-3, 1, 0) and (1,1,2), and ℓ_2 be the line through the points (6, 2, 6) and (3, -1, 0).
 - (a) Find the point of intersection of ℓ_1 and ℓ_2 .
 - (b) Find the plane that contains both lines.
- 3. (a) The equation in spherical coordinates:

$$\rho = 4\sin\phi(\cos\theta + \sin\theta)$$

defines a sphere. Find its center and radius. (Hint: Multiply both sides by ρ and convert to rectangular coordinates).

- (b) Convert the center point to cylindrical and spherical coordinates.
- 4. (a) Find the equation of the tangent line to the curve $\mathbf{r}(t) = \langle 4 t, 3t t^2, t \rangle$ at the point when t = 0.
 - (b) Using your work in part (a), find $\mathbf{T}(0)$. (Do NOT try to calculate a generic formula for $\mathbf{T}(t)$).
 - (c) We can show that $\mathbf{T}'(0) = \langle -3, -2, 3 \rangle$. Find $\mathbf{N}(0)$, $\mathbf{B}(0)$, and the osculating plane to the curve at t = 0.
- 5. Show that if vectors $\mathbf{x} \mathbf{y}$ and $\mathbf{x} + \mathbf{y}$ are orthogonal, then \mathbf{x} and \mathbf{y} must have the same length.
- 6. Let \mathbf{x} and \mathbf{y} be unit vectors. What are the minimum and the maximum magnitude of $\mathbf{x} \times \mathbf{y}$, and what is the geometric relationship between \mathbf{x} and \mathbf{y} when these are achieved? Why?
- 7. Suppose that a particle is moving with acceleration

$$\mathbf{a}(t) = \langle 6t, \cos(t), e^t \rangle$$

and that the object starts with initial velocity vector $\langle 2, 1, 2 \rangle$ and initial position vector $\langle 0, 1, 3 \rangle$. Find the position of the object when t = 1.

8. (Extra Credit) Prove that a straight line has zero curvature.