Math 225: Exam the First

Spring 2008

You have two hours to complete this exam. You may use a calculator for computation only, and you should be prepared to show the relevant steps to a problem where necessary.

1. (a) Give the equation, in rectangular coordinates, of the cylinder of radius 6 centered around the z-axis.
(b) Give the equation, in rectangular coordinates, of the cylinder of radius 6 centered around the y-axis.
(c) Find, in parametric form, the equation of the curve of intersection of the cylinder in part (b) with the plane $y+4 z=3$, and describe the curve.
2. Let ℓ_{1} be the line through the two points $(-3,1,0)$ and $(1,1,2)$, and ℓ_{2} be the line through the points $(6,2,6)$ and $(3,-1,0)$.
(a) Find the point of intersection of ℓ_{1} and ℓ_{2}.
(b) Find the plane that contains both lines.
3. (a) The equation in spherical coordinates:

$$
\rho=4 \sin \phi(\cos \theta+\sin \theta)
$$

defines a sphere. Find its center and radius. (Hint: Multiply both sides by ρ and convert to rectangular coordinates).
(b) Convert the center point to cylindrical and spherical coordinates.
4. (a) Find the equation of the tangent line to the curve $\mathbf{r}(t)=\left\langle 4-t, 3 t-t^{2}, t\right\rangle$ at the point when $t=0$.
(b) Using your work in part (a), find $\mathbf{T}(0)$. (Do NOT try to calculate a generic formula for $\mathbf{T}(t)$).
(c) We can show that $\mathbf{T}^{\prime}(0)=\langle-3,-2,3\rangle$. Find $\mathbf{N}(0), \mathbf{B}(0)$, and the osculating plane to the curve at $t=0$.
5. Show that if vectors $\mathbf{x}-\mathbf{y}$ and $\mathbf{x}+\mathbf{y}$ are orthogonal, then \mathbf{x} and \mathbf{y} must have the same length.
6. Let \mathbf{x} and \mathbf{y} be unit vectors. What are the minimum and the maximum magnitude of $\mathbf{x} \times \mathbf{y}$, and what is the geometric relationship between \mathbf{x} and \mathbf{y} when these are achieved? Why?
7. Suppose that a particle is moving with acceleration

$$
\mathbf{a}(t)=\left\langle 6 t, \cos (t), e^{t}\right\rangle
$$

and that the object starts with initial velocity vector $\langle 2,1,2\rangle$ and initial position vector $\langle 0,1,3\rangle$. Find the position of the object when $t=1$.
8. (Extra Credit) Prove that a straight line has zero curvature.

