Math 225: Exam the Second

You have two hours to complete this exam. You may use a calculator for computation only, and you should be prepared to show the relevant steps to a problem where necessary.

1. Consider the functions $f(x, y)=x^{2}+y^{2}, g(x, y)=\sqrt{x^{2}+y^{2}}$, and $h(x, y)=\ln \left(x^{2}+y^{2}\right)$.
(a) What familiar surfaces are the graphs of f and g ?
(b) What familiar curve is a level curve for f, g, or h ?
(c) Plot the level curves for each of the three functions for $z=1,2,3,4$ and 5 , with attention to spacing to show steepness.
(d) Which function is steepest? Which is least steep? Explain.
2. Find

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{(x-y)^{2}}{x^{2}+y^{2}}
$$

if it exists.
3. Suppose that for a continuous and differentiable function $f(x, y)$, we know that $f_{x}(x, y)=$ $2 x y+x^{3}$. Give at least three possible functions that could be $f_{y}(x, y)$.
4. Suppose that the temperature of a plate is given by the function $f(x, y)=\frac{y}{x^{2}}$.
(a) Suppose you are at the point $(2,3)$. In what direction should you move so as to increase your temperature the most rapidly?
(b) Suppose that you move from $(2,3)$ towards $(5,-1)$. At what rate is your temperature changing?
(c) Approximate the temperature at $(2.04,2.99)$.
5. Find and classify the critical points of $f(x, y)=\frac{x^{3}}{3}+\frac{y^{3}}{3}-\frac{x^{2}}{2}-y^{2}$. (There are four of them.)
6. Find the minimum surface area of a box without a top that has volume 27 .
7. Find the following integrals. Where necessary or appropriate, you may reverse the order of integration or convert into another coordinate system.
(a)

$$
\int_{0}^{1} \int_{0}^{1} y \cos (x y) d y d x
$$

(b)

$$
\int_{1}^{e} \int_{\ln x}^{1} e^{e^{y}} d y d x
$$

(For (b), reverse, but don't calculate)
(c)

$$
\int_{0}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} x^{2}+y^{2} d y d x
$$

8. Consider a plate in the shape of a quarter circle of radius 1 in the first quadrant. Suppose that the density of the plate is given by $\rho(x, y)=(x-y)^{2}$.
(a) Find the mass of the plate.
(b) Set up the integral to find \bar{x}. Convert this integral to polar coordinates, but DO NOT attempt to compute it.
(c) Argue that, for this plate, $\bar{y}=\bar{x}$.
9. Find the volume of the region bounded by the planes $y=0, x=1, z=0, y=x^{2}$ and $4 x+2 y+z=7$
10. Find, using Calculus, the volume of a sphere of radius R.
