/{Ey

Math 225: Quiz the Sixth
October 31, 2008

You know the drill by now. No books, no notes, no colleagues, and no answers without justification.
READ ALL QUESTIONS CAREFULLY
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1. {(a) Suppose that a continuous, differentiable function f{z,y) has a local maximum at the
point {a,b). What can we conclude about the partial derivatives (both first and second
order) of f at (a,b)?
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(b) Suppose that we want to maximize a function f(z,y) with regard to the constraint
glz,y) =k Then Vf = A ﬁ%\

(c¢) Clairaut’s Theorem says that for a continuous, twice-differentiable function with contin-
uous partial derivatives, that g,‘g = é ;i X .




2. Find and classify the critical point of f(z,y) = 2%y + 1227 — 8y.
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3. Using Lagrange Mlliltipliers, find the maximum value of f(z,y) = 222 + 3y2 — 4z — b subject
to 22 + 3% = 16. 2 < 2 -
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" 4. Using the method of your choice, find the point on the plane z 4 2y + 32 = 10 that is closest

to the origin. __Q_} « 7.+_7 L*"b =




