Math 225: Practice Exam the First

This practice test is meant to represent the types of topics that you will encounter on Friday's Exam.

- 1. Can parallel lines have different direction vectors? Explain.
- 2. Project the vector $\mathbf{b} = \langle 3, 0, 1 \rangle$ onto the vector $\mathbf{a} = \langle 2, 1, -1 \rangle$. Use this to express the vector $\mathbf{b} = \mathbf{x} + \mathbf{y}$, where \mathbf{x} is parallel to \mathbf{a} and \mathbf{y} is perpendicular to \mathbf{a} .
- 3. Argue (using vectors) that a parallelogram is a rectangle if and only if its diagonals are equal in length.
- 4. Consider the points P = (1, 3, -2), Q = (3, 1, 6), and R = (1, 2, -1)
 - (a) Find the perimeter of triangle PQR
 - (b) Is this triangle right, acute, or obtuse?
 - (c) Find the equation of the plane that contains this triangle.
- 5. (a) Describe, using inequalities and rectangular coordinates, the points in the first octant outside of the sphere of radius 2 centered at the origin.
 - (b) Same as part (a), but with spherical coordinates.
- 6. Below are a set of several equations in various 3 dimensional coordinate systems. Which of these equations represent the same surfaces? (By same, I mean the exact same surface in the same location). There are 9 equations, with three pairs and one triplet, each with the same surface.
 - (a) $x^2 + y^2 9z^2 = 1$
 - (b) y = 3
 - (c) x = y
 - (d) $\rho^2(\sin^2(\phi) 9\cos^2\phi) = 1$
 - (e) $r = 3 \csc(\theta)$
 - (f) $\rho = 3\cos(\phi)$
 - (g) $\rho = 3 \csc(\phi) \csc(\theta)$

- (h) $\theta = \frac{\pi}{4}$ (i) $x^2 + y^2 + (z - \frac{3}{2})^2 = \frac{9}{4}$
- 7. Which of the equations in Question 6 are planes? For those which are planes, give the normal vector. Which are spheres? For those which are spheres, give the center and the radius.
- 8. Parametrize the curve of intersection between the sphere $x^2+y^2+z^2=4$ and the plane x + y = 2. Describe the curve in words.
- 9. Consider the elliptical helix given by the vector valued function $\mathbf{r}(t) = \langle 3\cos(t), 2\sin(t), t \rangle$.
 - (a) Find the tangent line to this curve when $t = \frac{\pi}{2}$
 - (b) Find the angle between this curve and the curve $\mathbf{s}(\mathbf{t}) = \langle t 3, t^2, t^3 + \pi \rangle$ at the point $(-3, 0, \pi)$.
 - (c) Set up, but do not compute, the integral which gives the length of this curve from t = 0 to $t = 2\pi$.
 - (d) At the point when $t = \pi$, the curve has the unit Tangent vector $\langle 0, \frac{-2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \rangle$ and unit Normal vector $\langle 1, 0, 0 \rangle$. Calculate the Binormal vector, the normal plane, and the osculating plane at this point.