Math 225: Exam the Second

November 8, 2006

You have 90 minutes to complete this closed-book, closed-notes, and closed-colleague exam. You may use a calculator but be prepared to justify your answers if you do so. READ ALL QUESTIONS CAREFULLY, as I am more lenient with partial credit if I feel you've done so.

1. Consider the function $f(x, y)=e^{x+y}$.
(a) For which values k can one draw level curves of the form $f(x, y)=k$?
(b) Draw enough of the level curves to describe the behavior of the function as x and y both get large.
2. Find

$$
\lim _{(x, y) \rightarrow(1,1)} \frac{(x-y)}{\sqrt{x}-\sqrt{y}}
$$

or explain why it doesn't exist.
3. Which of the following functions have $f_{x y}=0$? Note: More than one answer is possible. Don't spend too much time on this one.
(a) $f(x, y)=x \cos \left(x^{2}\right)+y \arcsin \left(y^{2}\right)$
(b) $f(x, y)=y \cos \left(x^{2}\right)+x \arcsin \left(y^{2}\right)$
(c) $f(x, y)=x^{\cos (x)}-y e^{\sin (y)}$
(d) $f(x, y)=\cos \left(x^{2} y^{3}\right)$
4. Let $f(x, y)=\sqrt{x^{2}+y^{3}}$.
(a) Estimate $f(1.04,1.98)$.
(b) Find the directional derivative of f at the point $(1,2)$ in the direction of $\mathbf{i}+\mathbf{j}$
(c) Find the gradient and the maximum rate of change at the point $(1,2)$.
5. Let $f(x, y, z)=z\left(x^{2}+y^{2}\right)$.
(a) Compute the partial derivatives f_{x}, f_{y} and f_{z}.
(b) Convert the equation to cylindrical coordinates and compute f_{r}. Verify your answer using the chain rule.
(c) Convert the equation to spherical coordinates and compute f_{ρ}. Verify your answer using the chain rule.
6. Consider the function $f(x, y)=x^{2}+y^{2}+k x y$ for a constant k.
(a) For which values k does $f(x, y)$ have a local minimum at $(0,0)$?
(b) For which values k does $f(x, y)$ has a saddle point at $(0,0)$?
(c) For which values k do we cry at $(0,0)$?
7. Using Lagrange Multipliers, find the volume of the largest rectangular box that can fit in the first octant and under the plane $a x+b y+c z=d$, where a, b, c and d are positive constants.
8. Find the volume bound by the coordinate planes, the planes $x=1, y=2$ and the paraboloid $z=9-x^{2}-y^{2}$.
9. Reverse the order of integration on

$$
\int_{0}^{4} \int_{\frac{y}{2}}^{2} \cos \left(x^{2}\right) d x d y
$$

and find its value.

