1. If A, B, and C are the vertices of a triangle. Find $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}$.
2. Consider the 12 vectors that have their tail at the center of a clock and their respective heads at each of the 12 digits. What is the sum of these vectors. What if we remove the vector corresponding to 4 o'clock is deleted? What if, instead, all vectors have their tail at 12 o'clock, and their heads on the remaining digits?
3. Let \mathbf{x} and \mathbf{y} be nonzero vectors in \mathbb{R}^{2} that are not parallel. Show, algebraically, that if \mathbf{z} is any vector in \mathbb{R}^{2}, that there are scalars s and t such that $\mathbf{z}=s \mathbf{x}+t \mathbf{y}$.
4. Does the statement for exercise 3 hold if the vectors \mathbf{x} and \mathbf{y} are taken to be in \mathbb{R}^{3} ? Why or why not?
