1. Let \mathbf{x} and \mathbf{y} be perpendicular vectors. Prove that $|\mathbf{x}|^{2}+|\mathbf{y}|^{2}=|\mathbf{x}+\mathbf{y}|^{2}$. What is this result better known as?
2. Let $\mathbf{x}=\langle 1,1,0\rangle$ and $y=\langle 2,4,2\rangle$. Find a unit vector that is orthogonal to both \mathbf{x} and \mathbf{y}.
3. Prove that the diagonals of a rhombus intersect at right angles.
4. Suppose that $\mathbf{z}=|\mathbf{x}| \mathbf{y}+|\mathbf{y}| \mathbf{x}$ where \mathbf{x}, \mathbf{y} and \mathbf{z} are all nonzero vectors. Prove that \mathbf{z} bisects the angle between \mathbf{x} and \mathbf{y}.
