Supplementary Exercises for Section 11.3

- 1. Let **x** and **y** be perpendicular vectors. Prove that $|\mathbf{x}|^2 + |\mathbf{y}|^2 = |\mathbf{x} + \mathbf{y}|^2$. What is this result better known as?
- 2. Let $\mathbf{x} = \langle 1, 1, 0 \rangle$ and $y = \langle 2, 4, 2 \rangle$. Find a unit vector that is orthogonal to both \mathbf{x} and \mathbf{y} .
- 3. Prove that the diagonals of a rhombus intersect at right angles.
- 4. Suppose that $\mathbf{z} = |\mathbf{x}|\mathbf{y} + |\mathbf{y}|\mathbf{x}$ where \mathbf{x}, \mathbf{y} and \mathbf{z} are all nonzero vectors. Prove that \mathbf{z} bisects the angle between \mathbf{x} and \mathbf{y} .