1. What is the difference between the parametric curves $f(t)=\left\langle t, t, t^{2}\right\rangle, g(t)=\left\langle\sin (t), \sin (t), \sin ^{2}(t)\right\rangle$, and $h(t)=\left\langle t^{2}, t^{2}, t^{4}\right\rangle$ as t runs over all real numbers?
2. Plot each of the curves below in 2 dimensions, looking at each directly on the x, y and z axes (you'll have 6 total plots)
(a) $f(t)=\left\langle t, t^{3}, t^{2}\right\rangle, t$ goes over all real numbers
(b) $f(t)=\left\langle t^{2}, t-1, t^{2}+5\right\rangle$ for $0 \leq t \leq 3$
3. Given points $A=\left(a_{1}, a_{2}, a_{3}\right)$ and $B=\left(b_{1}, b_{2}, b_{3}\right)$ give parametric equations for the line segment connecting a and b. Be sure and give appropriate t values.
4. With a parametric plot and a set of t values, we can associate a 'direction'. For example, the curve $\langle\cos t, \sin t\rangle$ is the unit circle traced counterclockwise. How can we amend a set of given parametric equations and t values to get the same curve, only traced backwards?
