1. Find the length of the curve $\mathbf{r}(t)=\left\langle 2 t, t^{2}, \ln (t)\right\rangle$ between the points $(2,1,0)$ and $(4,4, \ln (2))$
2. Find \mathbf{T} and \mathbf{N} for the function $\mathbf{r}(t)=\left\langle\sqrt{2} t, e^{t}, e^{-t}\right\rangle$.
3. Find \mathbf{T}, \mathbf{N} and \mathbf{B}, and use them to find the normal and osculating planes to $\mathbf{r}(t)=$ $\langle 3 \cos (2 t), t, 3 \sin (2 t)\rangle$ at the point $(3, \pi, 0)$.
4. The binormal vector to a curve can be viewed as a function of time, $\mathbf{B}(t)$. Show that $\mathbf{B}^{\prime}(t)$ is a scalar multiple of $\mathbf{N}(t)$. (You can argue that $\mathbf{B}^{\prime}(t)$ is perpendicular to both $\mathbf{T}(t)$ and $\mathbf{B}(t)$).
