1. Explain in your own words why, when taking a partial derivative of a function of multiple variables, we can treat the variables not being differentiated as constants.
2. Consider a differentiable function, $f(x, y)$. Give physical interpretations of the meanings of $f_{x}(a, b)$ and $f_{y}(a, b)$ as they relate to the graph of f.
3. In much the same way that we used the tangent line to approximate the value of a function from single variable calculus, we can use the tangent plane to approximate a function from multivariable calculus. Consider the tangent plane found in Exercise 11. Use this plane to approximate $f(1.98, .4)$.
4. Suppose that one of your colleagues has calculated the partial derivatives of a given function, and reported to you that $f_{x}(x, y)=2 x+3 y$ and that $f_{y}(x, y)=4 x+6 y$. Do you believe them? Why or why not? If not, what answer might you have accepted for f_{y} ?
5. Suppose f and g are single variable differentiable functions. Find the $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ in each case
(a) $z=f(x) g(y)$
(b) $z=f(x y)$
(c) $z=f(x / y)$
