1. Find $\frac{d y}{d x}$ in each case both by Implicit Differentiation and by the Implicit Function Theorem.
(a) $x^{3}+y^{3}+3 x y=6$
(b) $\sin (x y)=4$
(c) $e^{x}+x y+\ln (y)=12$
2. Describe the points on the unit circle, $x^{2}+y^{2}=1$, where we cannot define one variable in terms of the other.
3. Describe the points on the unit sphere, $x^{2}+y^{2}+z^{2}=1$, where we cannot define one of the variables in terms of the other two.
4. Chemistry students will recognize the ideal gas law, given by

$$
P V=n R T
$$

which relates the Pressure, Volume, and Temperature of $n$ moles of gas. ( R is the ideal gas constant). Thus, we can view pressure, volume, and temperature as variables, each one dependent on the other two.
(a) If pressure of a gas is increasing at a rate of $0.2 \mathrm{~Pa} / \mathrm{min}$ and temperature is increasing at a rate of $1 \mathrm{~K} / \mathrm{min}$, how fast is the volume changing?
(b) If the volume of a gas is decreasing at a rate of $0.3 \mathrm{~L} / \mathrm{min}$ and temperatuere is increasing at a rate of $.5 \mathrm{~K} / \mathrm{min}$, how fast is the pressure changing?
(c) If the pressure of a gas is decreasing at a rate of $0.4 \mathrm{~Pa} / \mathrm{min}$ and the volume is increasing at a rate of $3 L / \mathrm{min}$, how fast is the temperature changing?
5. Verify the following identity in the case of the ideal gas law:

$$
\frac{\partial P}{\partial V} \frac{\partial V}{\partial T} \frac{\partial T}{\partial P}=-1
$$

6. The previous exercise was a special case of the following fact, which you are to verify here: If $F(x, y, z)$ is a function of 3 variables, and the relation $F(x, y, z)=0$ defines each of the variables in terms of the other two, namely $x=f(y, z), y=g(x, z)$ and $z=h(x, y)$, then

$$
\frac{\partial x}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial x}=-1
$$

