1. Find the directions in which the directional derivative of $f(x, y)=x^{2}+\sin (x y)$ at the point $(1,0)$ has the value of 1 .
2. A bug is crawling on the surface of a hot plate, the temperature of which at the point x units to the right of the lower left corner and y units up from the lower left corner is given by

$$
T(x, y)=100-x^{2}-3 y^{3} .
$$

(a) If the bug is at the point $(2,1)$, in what direction should he move to cool off the fastest? How fast is he cooling off?
(b) If the bug is at the point $(1,3)$, in what direction should he move in order to maintain his temperature?
3. Suppose that $g(x, y)=y-x^{2}$. Find the gradient at the point $(-1,3)$. Sketch the level curve to the graph of g when $g(x, y)=2$, and plot both the tangent line and the gradient vector at the point $(-1,3)$. (Make your sketch large). What do you notice, geometrically?
4. Recall from class that the gradient $\nabla(f)$ is a vector valued function of two variables. Prove the following gradient rules. Assume $f(x, y)$ and $g(x, y)$ are differentiable functions.
(a) $\nabla(f g)=f \nabla(g)+g \nabla(f)$
(b) $\nabla\left(\frac{f}{g}\right)=\frac{g \nabla f-f \nabla g}{g^{2}}$
(c) $\nabla\left((f(x, y))^{n}\right)=n f(x, y)^{n-1} \nabla f$

