1. How many third-order derivatives does a function of 2 variables have? How many of these are distinct?
2. How many nth order derivatives does a function of 2 variables have? How many of these are distinct?
3. Let α and k be constants. Prove that the function

$$
u(x, t)=e^{-\alpha^{2} k^{2} t} \sin (k x)
$$

is a solution to the heat equation $u_{t}=\alpha^{2} u_{x x}$
4. Let a be a constant. Prove that

$$
u=\sin (x-a t)+\ln (x+a t)
$$

is a solution to the wave equation $u_{t t}=a^{2} u_{x x}$.
5. Let $f(x, y)$ be a continuous differentiable function. Analyze the level curves near a critical value if that critical value is a max or a min. What if the level curve is a saddle point?

