1. Suppose that $f(x, y)=x^{2}+y^{2}+k x y$. Find and classify the critical points, and discuss how they change when k takes on different values.
2. Find the shortest distance from the point $(0, b)$ to the parabola $y=x^{2}$.
3. Find the shortest distance from the point $(0,0, b)$ to the paraboloid $z=x^{2}+y^{2}$.
4. Consider the function $f(x, y)=x^{3}-3 x^{2} y$.
(a) Show that $(0,0)$ is the only critical point of f.
(b) Show that the Discriminant test is inconclusive for f.
(c) Determine the traces of f obtained by setting $x=k$ for various values of k.
(d) What kind of critical point is $(0,0)$?
5. Find the volume of the largest rectangular box with edges parallel to the axes that can be inscribed in the ellipsoid $2 x^{2}+72 y^{2}+18 z^{2}=288$.
