Math 225: Exam the Second

ElevenElevenEleven

This exam is closed book and closed notes. READ ALL DIRECTIONS CAREFULLY!! Please justify all of your answers. You may use a calculator for arithmetic and scienific functions only (ie, no graphing). You have two hours.

1. Let $f(x, y)=\sqrt{9-x^{2}-y^{2}}$
(a) What is the domain of f ?
(b) For which k can we draw level curves of the form $f(x, y)=k$?
(c) Draw level curves below for $k=0,1,2,3$, with attention to spacing.
2. Find the mixed partial derivative $f_{x y}$ if $f(x, y)=x^{2} \arccos (x)+x y+y^{y}$.
3. Let $f(x, y)=e^{x y}$.
(a) Find the tangent plane at the point $(2,1)$, and use it to approximate $f(2.1,1.04)$. (Please express your answer as a multiple of e^{2}.
(b) Find $D_{u}(f)$ as we move from $(2,1)$ to $(5,5)$.
4. Let $x^{2} y z+y z+x^{3} y=5$.
(a) Find $\frac{\partial y}{\partial x}$ and $\frac{\partial y}{\partial z}$.
(b) Find the tangent plane to $f(x, y)$ at $(-1,1,3)$
5. Let $f(x, y)=x^{2}+k x y+y^{2}$, where k is a constant.
(a) Find the critical point of f (it should be independent of k).
(b) For which values of k is the critical point a minimum?
(c) For which values of k is the critical point a maximum?
(d) For which values of k is the critical point a saddle point?
(e) For which values of k does the discriminant test fail to be conclusive at the critical point?
(f) What is the nature of the critical point for those values of k ?
6. Find the maximum and minimum values of $f(x, y)=2 x+y$ subject to the constraint $x^{2}+2 y^{2}=$ 1. You may use any method that you wish.
7. Find

$$
\iint_{R} x(x y+1)^{3} d A
$$

where $R=[0,1] \times[0,2]$.
8. Consider the region R bound by the lines $y=0, x=9$ and $x=y^{2}$. Write

$$
\iint_{R} f(x, y) d A
$$

in both possible orders. (That is, use R to determine the bounds of integration).
9. Let $z^{2}=1+x^{2}+y^{2}$.
(a) What quadric surface is the graph of this equation?
(b) Find the volume in the first octant bound by this surface and the plane $z=3$.
10. Convert

$$
\int_{0}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} x+y d y d x
$$

to polar coordinates, and solve the integral.
11. Set up the integral to find the area of the surface of $f(x, y)=x^{2}+2 y^{2}$ over the triangle with vertices $(0,0),(1,1)$ and $(1,-1)$. You need not compute this integral.
12. Should you get the same integral for the area of the surface of $f(x, y)=x^{2}+2 y^{2}+3$? Explain both geometrically and algebraically.

