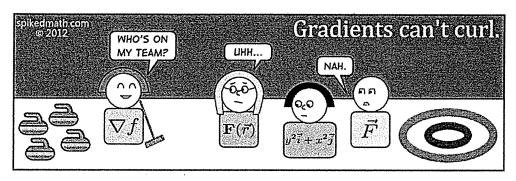
KEY

Math 225: Quiz the Last May 8, 2015

You have the remainder of the period to complete this closed-book, closed-notes, closed-colleague quiz. You may use a calculator for arithmetic only (ie, no plotting). PLEASE READ ALL DIRECTIONS CAREFULLY!



1. Find $\oint_C 2x + y \ dx + 2xy \ dy$ where C is the triangle with vertices (0,0), (3,6)

Find
$$\oint_C 2x + y \, dx + 2xy \, dy$$
 where C is the triangle with vertices $(0,0)$, $(3,6)$ and $(0,6)$.

$$\oint_C Pdx + Qdy = \iint_{2x} \frac{2Q}{2y} dx = \int_0^3 \int_{2x}^6 2y - 1 \, dy \, dx$$

$$= \int_0^3 y^2 - y \int_{2x}^6 dx = \int_0^3 30 - 4x^2 + 2x \, dx$$

$$= \int_0^3 30 - 4x^2 + 2x \, dx$$

$$= \int_0^3 30 - 4x^2 + 2x \, dx$$

$$= \int_0^3 30 - 4x^2 + 2x \, dx$$

2. Find $\oint_C (e^x + x^2y) dx + (\ln(2y^2 + 1) - xy^2) dy$ where C is the circle of radius 5, centered at the origin, traversed clockwise.

$$\oint_{D} Pd_{x} + Qdy = \iint_{\partial y} \frac{\partial P}{\partial x} dA = \iint_{D} x^{2} + y^{2} dA$$

$$= \int_{0}^{2\pi} \int_{0}^{5} r^{2} r dr d\theta$$

$$= \int_{0}^{4} \frac{1}{4} r^{2} dx$$

$$= \int_{0}^{4} \frac{1}{4} r^{2} dx$$

3. Let
$$\mathbf{F} = \langle xyz^2, xy^2z, x^2yz \rangle$$

(a) Find curl(F).

(b) Find $div(\mathbf{F})$.

(b) Find
$$div(\mathbf{F})$$
.

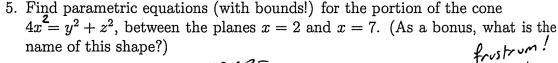
$$\frac{\partial (xyz^2)}{\partial x} + \frac{\partial (xyz)}{\partial y} + \frac{\partial (xyz)}{\partial z} = yz^2 + 2xyz + x^2y$$

(c) Verify that $div(\operatorname{curl}(\Gamma)) = 0$.

$$\frac{(c) \text{ Verify final and (CHIT(I))} = 0.}{2 \times (c) \cdot (c)} = \frac{2}{2 \times (c)} \left(x^{2} - xy^{2} \right) + \frac{2}{2} (0) + \frac{2}{2} \left(y^{2} - xy^{2} \right)$$

$$= 2 \times 3 - y^{2} + y^{2} - 2 \times 3 = 0$$

4. Let $\mathbf{F} = \langle 2xy, x^2 + z^2, 2xz \rangle$. Is there a vector field \mathbf{G} such that $\mathbf{F} = \mathbf{curl}(\mathbf{G})$? Why or why not?



$$y = r \cos \theta$$

$$3 = r \sin \theta$$

$$4 \le r \le 14$$

$$x = \frac{r}{2}$$

$$x = \frac{r}{2}$$

$$4 x^{2} = 4(\frac{r}{2})^{2} = r^{2} = r^{2} \cos^{2}\theta + r^{2} \sin^{2}\theta$$

$$= y^{2} + y^{2}$$

6. Find the surface area of
$$z = xy$$
 that lies inside of the cylinder $x^2 + y^2 = 1$

4. Surface

$$x=u$$

 $y=v$ $\vec{r}_u = \langle 1, 0, v \rangle$
 $z=uv$ $\vec{r}_v = \langle 0, 1, u \rangle$
 $d\vec{s} = \langle -v, -u, 1 \rangle$ dadu
 $d\vec{s} = \sqrt{v^2 + u^2 + \ell}$ dudu

S. A. =
$$\iint \sqrt{v^2 + u^2 + 1} \, du \, dv$$

= $\int_{0}^{2\pi} \int_{0}^{1} \sqrt{r^2 + 1} \, du \, dv$
= $\int_{0}^{2\pi} \int_{0}^{1} \sqrt{r^2 + 1} \, r \, dr \, d\theta$
= $2\pi \left(\frac{2\pi}{3} - 1\right)$

7. (Bonus) Let
$$f(x, y, z)$$
 be any function of three variables. Is there a vector field **F** such that $f(x, y, z) = div(\mathbf{F})$? If so, explain how to construct one.

Yes. Let
$$g(x,y,3) = \int_0^t f(t,y,3) dt$$

antidevof $f(x,y,3) = \int_0^t f(t,y,3) dt$
Then If $\vec{F} = \langle g(x,y,3),0,0 \rangle$
Then $d.v(\vec{F}) = f(x,y,3)$

						•
,						
				•		
•						
,						
	•					
			•			
						•
				*		
				•		
						•
		*			•	
	•				*	
					·	
					•	
	•					
	•					
	•	· • • • • • • • • • • • • • • • • • • •	•			
	•	· • • • • • • • • • • • • • • • • • • •	•			
	•	· • • • • • • • • • • • • • • • • • • •	•			
	•	· • • • • • • • • • • • • • • • • • • •	•			
		· • • • • • • • • • • • • • • • • • • •	•			
			•			