Math 126: Quiz the Fifth $\pi - 1$

You have the remainder of the period to complete this closed-book, closed-notes, closed-colleague quiz. You may use a calculator for arithmetic only (ie, no plotting). PLEASE READ ALL DIRECTIONS CAREFULLY!

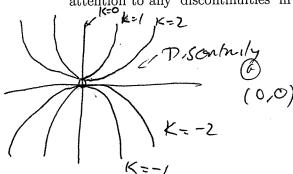
1. Suppose that a colleague tells you that he has computed the following partial derivatives for a function f(x, y)

$$f_x(x,y) = 3x + 2y$$
 $f_x y = Z$
 $f_y(x,y) = 4x + y^2$ $f_y = Y$

(a) Do you believe him? Why or why not?

(b) If he was right about f_y , give at least three functions that could be f(x, y). Your functions should differ by more than just a constant.

$$f_{y} = 4x + y^{3}$$


$$f_{z} = 4x + y^{3} + y^{3} + y^{3} + x$$

$$f_{z} = 4x + y^{3} + y$$

2. Let
$$f(x, y) = \frac{x^2}{y}$$

(a) What is the domain of f(x, y)?

(b) Draw level curves for f(x,y) corresponding to k=-2,-1,0,1,2. Pay attention to any 'discontinuities' in your graphs. X-K) y=X Punkolas @ /re

(c) Calculate the partials, $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

$$f_{x} = \frac{2x}{y} \qquad f_{y} = \frac{-x^{2}}{y^{2}}$$

(d) Find the tangent plane at the point (2,1) and use it to approximate f(2.1, 0.95).

Tplane @ (2,1)

$$f(2,1) = \frac{4}{1} = 4$$

 $f_{x}(2,1) = \frac{2x}{y}|_{(2,1)} = 4$
 $f_{y}(2,1) = \frac{-x^{2}}{y^{2}|_{(2,1)}} = -4$

$$3 = 4 + 4(x-2) - 4(y-1)$$

$$4(2.1-2) \approx 4 + 4(2.1-2) - 4(0.95-1)$$

$$= 4 + .4 + .2$$

$$= 4 \cdot .6$$

3. Suppose that $z=x^3+3xy+y^3$, and that $x=u^2+v^2$ and that y=2uv. Find $\frac{\partial z}{\partial v}$.

$$\frac{\partial 3}{\partial v} = \frac{\partial 3}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial 3}{\partial y} \frac{\partial y}{\partial v}$$

$$= (3x^2 + 3y)(2v) + (3x + 3y^2)(2u)$$

, how it feels

4. The Wind Chill (perceived outside temperature on a windy day) W is a function of T, the real temperature, and V, the speed of the wind. What do you expect the signs of $\frac{\partial W}{\partial T}$ and $\frac{\partial W}{\partial V}$ to be, and why?

If Tinneases, it feels warmen out

50 2W >0

If Winnesser, it feels colder out

50 DW < 0.

- 5. Suppose that a sand crab is on a beach, where the temperature in degrees Centigrade is given by $T(x,y) = 70 3x^2 2y^2$.
 - (a) How hot is the crab at the point (3,1)?

$$T(3,1) = 70-3(3)^2-2(1^2)$$

= 70-27-2 = 4/°C

(b) OUCH! What temperature should he move to cool off the fastest?

$$\frac{\nabla T = (T_{x}, T_{y})}{= (-6x, -4y)} = \frac{2-18, -4}{50} = \frac{50}{18, 4}$$

- 6. (Bonus)
 - (a) Favorite kind of pie? KEY LFME.
 - (b) Favorite kind of pi?