Why Beamer? A beginning example

Barry Balof¹ Mary Elizabeth Balof²

¹Whitman College Walla Walla, WA

²Miss Dixie's KinderMusik College Place, WA

Math 236-Calculus Lab April 11-12, 2007

Outline

- Beginnings and Nomenclature
 - The History
 - European Language
- The Beamer Document Class
 - An Ordinary TeX Document
 - Inclusion of different file types
 - Overlays
 - Transitions
- Presenting the Mathematics

The Origins of Beamer

Beamer was created by Till Tantau for his Ph. D. thesis presentation in 2003.

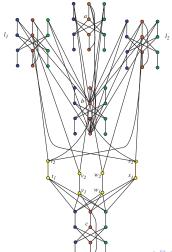
The nomenclature

Beamer is the generic European word for overhead projector.

• Est-ce qu'il y a un Beamer?

Hebt u een Beamer?

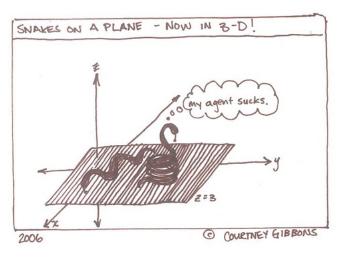
Egy Beamer nekked van?


Why We Love TeX

Beamer handles mathematical expressions exactly as TeX does.

- Which of the following vector fields \mathbf{F} . are conservative? For those that are, find a function f(x, y) such that $\mathbf{F} = \nabla \mathbf{f}$.

 - $\mathbf{3} \ \mathbf{F} = \langle 2\cos x + \mathbf{e}^x, 2\mathbf{e}^y \rangle$
 - $\mathbf{6} \quad \mathbf{F} = \langle 2\cos y + \mathbf{e}^y, 2\mathbf{e}^x \rangle$


Including .eps files

Including .jpg files

Including .pdf files

- Why was 6 afraid of 7?
- Because 7 knocked over a liquor store in LA.
- Also, 7 was a cannibal.

- Why was 6 afraid of 7?
- Because 7 knocked over a liquor store in LA.
- Also, 7 was a cannibal.

- Why was 6 afraid of 7?
- Because 7 knocked over a liquor store in LA.
- Also, 7 was a cannibal.

- Why was 6 afraid of 7?
- Because 7 knocked over a liquor store in LA.
- Also, 7 was a cannibal.

- Vector Addition: a + b
- Scalar Multiplication: $\lambda \cdot \mathbf{a}$
- Dot Product: a ⊙ b
- Cross Product: a × b

- Vector Addition: a + b
- Scalar Multiplication: λ · a
- Dot Product: a ⊙ b
- Cross Product: a × b

- Vector Addition: a + b
- Scalar Multiplication: $\lambda \cdot \mathbf{a}$
- Dot Product: a ⊙ b
- Cross Product: a × b

- Vector Addition: a + b
- Scalar Multiplication: $\lambda \cdot \mathbf{a}$
- Dot Product: a ⊙ b
- Cross Product: a × b

The Curtain Rises

You can include fancy transitions a la *Powerpoint* Whether Horizontal

The Curtain Also Rises

or Vertical

The Curtain Dissipates

or Sparkly

A Theorem on Prime Numbers

Theorem

There exist infintely many primes.

Proof.

Assume that there are only finitely many primes, $p_1 \dots p_k$. Consider $n = \prod_{i=1}^k p_i + 1$. Since $\gcd(n, p_i) = 1$ for all i, it follows that n is divisible by a prime other than those from the finite set.

A Theorem on Prime Numbers

Theorem

There exist infintely many primes.

Proof.

Assume that there are only finitely many primes, $p_1 \dots p_k$. Consider $n = \prod_{i=1}^k p_i + 1$. Since $\gcd(n, p_i) = 1$ for all i, it follows that n is divisible by a prime other than those from the finite set.

Columns and Boxes

The Calculi

Limits Area

Derivatives Volumes

Graphing Integrals

Optimization Series and Sequences

For more...

The Beamer class

Manual for version 3.0.6

Avaliable on the Math 236 Website

Peter Smith

LaTEX for Logicians

Available on the Math 236 Website

Or at

http://www.phil.cam.ac.uk/teaching_staff/Smith/LaTeX/

