Why Beamer?
 A beginning example

Mary Elizabeth Balof ${ }^{1}$ Daniel Balof ${ }^{2}$

${ }^{1}$ Miss Betty's PreSchool
Walla Walla, WA
${ }^{2}$ YMCA Swim Lessons
Walla Walla, WA
Math 236-Calculus Lab
April 15-16, 2009

Outline

(1) Beginnings and Nomenclature

- The History
- European Language
(2) The Beamer Document Class
- An Ordinary TeX Document
- Inclusion of different file types
- Overlays
- Transitions
(3) Presenting the Mathematics

The Origins of Beamer

Beamer was created by Till Tantau for his Ph. D. thesis presentation in 2003.

The nomenclature

Beamer is the generic European word for overhead projector.

- Est-ce qu'il y a un Beamer?
- Hebt u een Beamer?
- Egy Beamer nekked van?

Why We Love TeX

Beamer handles mathematical expressions exactly as $\Delta T_{E} X$ does.

- Which of the following vector fields \mathbf{F}. are conservative? For those that are, find a function $f(x, y)$ such that $\mathbf{F}=\nabla \mathbf{f}$.
- $\mathbf{F}=\left\langle 2 x y, x^{2}+y^{2}\right\rangle$
(2) $\mathbf{F}=\langle 2 \cos x, 2 y \cos x\rangle$
(3) $\mathbf{F}=\left\langle 2 \cos x+e^{x}, 2 e^{y}\right\rangle$
(1) $\mathbf{F}=\left\langle 2 \cos y+e^{y}, 2 e^{x}\right\rangle$

Including .eps files

Beginnings and Nomenclature
Presenting the Mathematics

An Ordinary TeX Document
File Types
Overlays
Transitions

Including .jpg files

Including .pdf files

The Pointwise Reveal

- Why was 6 afraid of 7 ?
- Because 7 knocked over a liquor store in LA.
- Also, 7 was a cannibal.

The Pointwise Reveal

- Why was 6 afraid of 7 ?
- Because 7 knocked over a liquor store in LA.
- Also, 7 was a cannibal.

The Pointwise Reveal

- Why was 6 afraid of 7 ?
- Because 7 knocked over a liquor store in LA.
- Also, 7 was a cannibal.

The Pointwise Reveal

- Why was 6 afraid of 7 ?
- Because 7 knocked over a liquor store in LA.
- Also, 7 was a cannibal.

The Single Point Highlight

How we can combine vectors:

- Vector Addition: a + b
- Scalar Multiplication: $\lambda \cdot$ a
- Dot Product: $\mathbf{a} \odot \mathbf{b}$
- Cross Product: $\mathbf{a} \times \mathbf{b}$

The Single Point Highlight

How we can combine vectors:

- Vector Addition: $\mathrm{a}+\mathrm{b}$
- Scalar Multiplication: $\lambda \cdot \mathbf{a}$
- Dot Product: a © b
- Cross Product: $\mathbf{a} \times \mathbf{b}$

The Single Point Highlight

How we can combine vectors:

- Vector Addition: a + b
- Scalar Multiplication: $\lambda \cdot$ a
- Dot Product: $\mathbf{a} \odot \mathbf{b}$
- Cross Product: $\mathbf{a} \times \mathrm{b}$

The Single Point Highlight

How we can combine vectors:

- Vector Addition: a + b
- Scalar Multiplication: $\lambda \cdot \mathbf{a}$
- Dot Product: $\mathbf{a} \odot \mathbf{b}$
- Cross Product: $\mathbf{a} \times \mathbf{b}$

The Curtain Rises

You can include fancy transitions a la Powerpoint Whether Horizontal

Beginnings and Nomenclature
The Beamer Class
Presenting the Mathematics

The Curtain Also Rises

or Vertical

Beginnings and Nomenclature
The Beamer Class
Presenting the Mathematics

The Curtain Dissipates

or Squarely

A Theorem on Prime Numbers

Theorem

There exist infintely many primes.

> Proof.
> Assume that there are only finitely many primes, $p_{1} \ldots p_{k}$ Consider $n=\prod_{i=1}^{k} p_{i}+1$. Since $\operatorname{gcd}\left(n, p_{i}\right)=1$ for all i, it follows that n is divisible by a prime other than those from the finite set.

A Theorem on Prime Numbers

Theorem

There exist infintely many primes.

Proof.

Assume that there are only finitely many primes, $p_{1} \ldots p_{k}$. Consider $n=\Pi_{i=1}^{k} p_{i}+1$. Since $\operatorname{gcd}\left(n, p_{i}\right)=1$ for all i, it follows that n is divisible by a prime other than those from the finite set.

Columns and Boxes

The Calculi

Limits
Derivatives
Graphing
Optimization

Area
 Volumes Integrals Series and Sequences

Making the document your own

Figuring It out

For more...

囯 Til Tantau
The Beamer class
Manual for version 3.0.6
Avaliable on the Math 236 Website
圊 Peter Smith
LaTEX for Logicians
Available on the Math 236 Website
Or at
http://www.phil.cam.ac.uk/teaching_staff/Smith/LaTeX/

