Divisibility Problems

1. (1983 Putnam A-1) How many integers divide at least one of 10^{40} and 20^{30} ?
2. (1985 Putnam A-4) Define a sequence $\left\{a_{i}\right\}$ by $a_{1}=3$ and $a_{i+1}=3^{a_{i}}$ for $i \geq 1$. Which integers between 00 and 99 inclusive occur as the last two digits in the decimal expansion of infinitely many a_{i} ?
3. Prove that no partial sum of the harmonic series $\sum_{k=1}^{n} \frac{1}{k}$ can be an integer for $n>1$.
4. Find a ten digit number abcdefghij that uses the digits 0 through 9 inclusive exactly once, such that the one digit number a is divisible by 1 , the two digit number $a b$ is divisible by 2 , the three digit number $a b c$ is divisible by three, and so on, with the 10 digit number abcdefghij divisible by 10 .
5. Let N be an integer. Prove that there is some integer multiple of N whose digits are all 0 's or 1's.
6. You want to color the integers from 1 to 100 so that no number divides another number of the same color. What is the minimum number of colors you must use?
