The Binomial Coefficient

1. See the relevant problems in Yaglom and Yaglom as an introduction.
2. For which values n is $\binom{2 n}{n}$ odd?
3. (Zeitz, 'The Art and Craft of Problem Solving') We are given n points around a circle and the chords connecting each pair of points is drawn. If no three chords go through the same point, how many intersections are there between chords?
4. (1996, [A-3]) Suppose that each of 20 students has made a choice of anywhere from 0 to 6 courses from a total of 6 courses offered. Prove or disprove: there are 5 students and 2 courses such that all 5 have chosen both courses or all 5 have chosen neither course.
5. (1992, [B-2]) For nonnegative integers n and k, define $Q(n, k)$ to be the coefficient of x^{k} in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{n}$. Prove that

$$
Q(n, k)=\sum_{j=0}^{k}\binom{n}{j}\binom{n}{k-2 j}
$$

6. Explain, combinatorially, the 'hockey stick' identity:

$$
\binom{r}{r}+\binom{r+1}{r}+\binom{r+2}{r}+\ldots+\binom{f}{r}=\binom{f+1}{r+1}
$$

