Parity Problems

1. Let (a, b, c) be a Pythagorean Triple $\left(a^{2}+b^{2}=c^{2}\right)$. Prove that $a b c$ is even.
2. Seven coins start on a table all heads up. On any move, you may turn over any 4 of them. Is it ever possible to get all the coins tails up?
3. One hundred black checkers and 100 red checkers are placed horizontally in a row with the first and last checker being black. Prove that there is an integer n for which there are exactly as many red checkers as black checkers among the checkers numbered 1 to n.
4. (1973 Putnam A1) Let there be given nine lattice points (points with integral coordinates) in three dimensional Euclidean space. Show that there is a lattice point (not necessarily one of the given nine) on the interior of one of the line segments joining two of these points.
5. (2002 Putnam A3) Let $n \geq 2$ be an integer and T_{n} be the number of non-empty subsets S of $\{1,2,3, \ldots, n\}$ with the property that the average of the elements of S is an integer. Prove that $T_{n}-n$ is always even.
6. (2003 UIUC Mock Putnam). A binary partition of an integer is a partition of the integer into parts which are a nonnegative power of 2 (with repetition allowed). Let b_{n} be the number of binary partitions of n. For example, $b_{5}=4$, as 5 can be represented as $4+1,2+2+1$, $2+1+1+1$, and $1+1+1+1+1$. Show that b_{n} is even for all $n \geq 2$.
