Polynomial Problems

1. What is the largest integer n such that $n+10$ divides $n^{3}+100$?
2. (Putnam 2005 B-1) Find a nonzero polynomial $P(x, y)$ such that $P(\lfloor a\rfloor,\lfloor 2 a\rfloor)=0$ for all real numbers a. (Note: $\lfloor\nu\rfloor$ is the greatest integer less than or equal to ν.)
3. (Putnam 1963 B-2) Find all integers n such that $x^{2}-x+n$ divides $x^{13}+x+90$.
4. Prove that if $f(x)$ is a polynomial with integral coefficients, and there exists a positive integer k such that none of the integers $\mathrm{f}(1), \mathrm{f}(2), \ldots, \mathrm{f}(\mathrm{k})$ is divisible by k , then $\mathrm{f}(\mathrm{x})$ has no integral root.
5. Suppose that a and b are different roots of the polynomial $x^{3}+x-1$. Prove that $a b$ is a root of $x^{3}-x^{2}-1$.
6. (Putnam $2003 \mathrm{~B}-1$) Do there exist polynomials $a(x), b(x), c(y), d(y)$ such that

$$
1+x y+x^{2} y^{2}=a(x) c(y)+b(x) d(y)
$$

holds identically?
7. (Putnam 1992 A-3) Define $C(\alpha)$ to be the coefficient of x^{1992} in the power series about $x=0$ of $(1+x)^{\alpha}$. Evaluate

$$
\int_{0}^{1}\left(C(-y-1) \sum_{k=1}^{1992} \frac{1}{y+k}\right) d y
$$

8. (Putnam 1999 A-2) Let $p(x)$ be a polynomial that is nonnegative for all real x. Prove that for some k, there are polynomials $f_{1}(x), \ldots, f_{k}(x)$ such that

$$
p(x)=\sum_{j=1}^{k}\left(f_{j}(x)\right)^{2}
$$

