Counting Problems

1. (a) Suppose that you have a chessboard with two opposite corner squares removed. Can you tile the remaining squares with 2×1 dominoes?
(b) Suppose that you have a chessboard with one square removed from the corner. Can you tile the remaining squares with 3×1 dominoes?
(c) Suppose that you have a rectangular board $m \times n$ that you want to tile with $r \times 1$ dominoes. Prove that r divides either m or n (or both).
2. Prove that if, in a standard deck of 52 playing cards, there are more red cards in the top 26 than there are black cards in the bottom 26 , then somewhere in the deck there are three consecutive cards of the same color.
3. (1994 Putnam B1) Find all positive integers n that are within 250 of exactly 15 perfect squares.
4. (1996 Putnam B1) Define a selfish set to be a set which has its own cardinality (number of elements) as an element. Find, with proof, the number of subsets of $\{1,2, \ldots, n\}$ which are minimal selfish sets, that is, selfish sets none of whose proper subsets is selfish.
5. (1995 Putnam A4) Suppose we have a necklace of n beads. Each bead is labeled with an integer and the sum of all these labels is $n-1$. Prove that we can cut the necklace to form a string whose consecutive labels $x_{1}, x_{2}, \ldots, x_{n}$ satisfy

$$
\sum_{i=1}^{k} x_{i} \leq k-1 \quad \text { for } \quad k=1,2, \ldots, n
$$

6. (1995 Putnam B1) For a partition π of $\{1,2,3,4,5,6,7,8,9\}$, let $\pi(x)$ be the number of elements in the part containing x. Prove that for any two partitions π and π^{\prime}, there are two distinct numbers x and y in $\{1,2,3,4,5,6,7,8,9\}$ such that $\pi(x)=\pi(y)$ and $\pi^{\prime}(x)=\pi^{\prime}(y)$. [A partition of a set S is a collection of disjoint subsets (parts) whose union is S.]
