Calculus Problems

1. (1996 Putnam A1) The horizontal line $y=c$ intersects the curve $y=2 x-3 x^{3}$ in the first quadrant as in the figure. Find c so that the areas of the two shaded regions are equal. [Figure not included. The first region is bounded by the y-axis, the line $y=c$ and the curve; the other lies under the curve and above the line $y=c$ between their two points of intersection.]
2. (1990 Putnam B1) Find all real-valued continuously differentiable functions f on the real line such that for all x,

$$
(f(x))^{2}=\int_{0}^{x}\left[(f(t))^{2}+\left(f^{\prime}(t)\right)^{2}\right] d t+1990 .
$$

3. (1988 Putnam A2) A not uncommon calculus mistake is to believe that the product rule for derivatives says that $(f g)^{\prime}=f^{\prime} g^{\prime}$. If $f(x)=e^{x^{2}}$, determine, with proof, whether there exists an open interval (a, b) and a nonzero function g defined on (a, b) such that this wrong product rule is true for x in (a, b).
4. (1987 Putnam B1) Evaluate

$$
\int_{2}^{4} \frac{\sqrt{\ln (9-x)} d x}{\sqrt{\ln (9-x)}+\sqrt{\ln (x+3)}}
$$

5. Let f be a real valued function such that
(a) f is increasing on $[0,1]$.
(b) $f(0)=0$
(c) f^{\prime} exists and is increasing on $(0,1)$.

Prove that $g(x)=f(x) / x$ is increasing on $(0,1)$.
6. (1983 Putnam A2) A clock's minute hand has length 4 and its hour hand length 3. What is the distance between the tips at the moment when it is increasing most rapidly?

