Key

Math 300: Quiz the Last

‘This exam is closed book and closed notes. You may use a calculator for arithmetic only. You
have until 5 minutes before the hour to finish the in-class portion. The take-home portion is due
Tuesday at the beginning of class.

1. True or False. Give a brief justification in each case.

(Assume that V is an n-dimensional vector space with basis 3 and W is an m-dimensional
vector space with basis v) .

{a) IT:V — W is a linear transformation, then the matrix for T relative to 8 and «y is an

1 X m matrix.
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(b) If T': V' — W has as its matrix relative to 3 and « an invertible matrix, then m = n.
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(c) If 3+ 4 is an eigenvalue of a matrix A, then so is —3 +
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(d) f v.-v =0, then v=20.
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(e) If y is a vector in R™ and W is a subspace of R", then y L pr"ojw(y.)
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2. Consider the linear transformation T : Py — Py given by
T(p(z)) = /0 ' p(t) dt + p(z)
(a) Compute T(3z2 + 2z + 4)
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(b) Let 8 ={1,z,2?} and v = {1, z,2%,2%}. Compute the matrix of T relative to 3 and +.
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(c) Use this matrix to verify your caleulation in part (a)
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3. Consider the matrix
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(a) Use the characteristic polynomial to prove that X = 2 — 3i is an eigenvalue of A.
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b} The corresponding eigenvector to A is . Use this to write A = PCP™!, where
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4. Lety= | 1| andv=| —2 |. Express y = x + z, where x is a multiple of v and z is
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orthogonal to v.
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5. Prove that if the distance from u to v is the same as the distance from u to —v, then u and
v are orthogonal.




