## Math 300: Quiz the Last

This exam is closed book and closed notes. You may use a calculator for arithmetic only. You have until 5 minutes before the hour to finish the in-class portion. The take-home portion is due Tuesday at the beginning of class.

1. True or False. Give a brief justification in each case.

(Assume that V is an n-dimensional vector space with basis  $\beta$  and W is an m-dimensional vector space with basis  $\gamma$  ) .

(a) If  $T: V \to W$  is a linear transformation, then the matrix for T relative to  $\beta$  and  $\gamma$  is an  $n \times m$  matrix.

T: V -> W [T] is mixa, so

(b) If  $T: V \to W$  has as its matrix relative to  $\beta$  and  $\gamma$  an invertible matrix, then m = n.

(True.) Toursthe 1-1, on to

(c) If 3+i is an eigenvalue of a matrix A, then so is -3+i

(False.) 3-i is an eigenvalue in this case

(d) If  $\mathbf{v} \cdot \mathbf{v} = 0$ , then  $\mathbf{v} = \mathbf{0}$ .

(True) V.V = (|V|12, only That magnitude 0.

(e) If y is a vector in  $\mathbb{R}^n$  and W is a subspace of  $\mathbb{R}^n$ , then  $\mathbf{y} \perp \mathbf{proj}_W(\mathbf{y})$ 

False (y-projug) I projug

2. Consider the linear transformation  $T: \mathbb{P}_2 \to \mathbb{P}_3$  given by

$$T(p(x)) = \int_0^x p(t) dt + p(x)$$

(a) Compute  $T(3x^2 + 2x + 4)$ 

$$T(3x^{2}+2x+4) = \int_{0}^{x} 3t^{2}+2t+4 dt + 3x^{2}+2x+4$$

$$= x^{3}+x^{2}+4x+3x^{2}+2x+4 = x^{3}+4x^{2}+6x+4$$

(b) Let  $\beta = \{1, x, x^2\}$  and  $\gamma = \{1, x, x^2, x^3\}$ . Compute the matrix of T relative to  $\beta$  and  $\gamma$ .

$$T(1) = \chi + 1$$

$$T(x) = \frac{\chi^2}{2} + x$$

$$T(x^2) = \frac{\chi^3}{3} + x^2$$

$$\begin{bmatrix} T \\ \beta \end{bmatrix} = \begin{bmatrix} 100 \\ 110 \\ 0\frac{1}{3} \end{bmatrix}$$

(c) Use this matrix to verify your calculation in part (a)

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & \frac{1}{2} & 1 \\ 0 & 0 & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 4 \\ 1 \end{bmatrix} = x^{3} + 4x^{3} + 6x + 4$$

$$= x^{3} + 4x^{3} + 6x + 4$$

$$= x^{3} + 4x^{3} + 6x + 4$$

$$= x^{3} + 4x^{3} + 6x + 4$$

## 3. Consider the matrix

$$A = \left[ \begin{array}{cc} 3 & -5 \\ 2 & 1 \end{array} \right]$$

(a) Use the characteristic polynomial to prove that  $\lambda = 2 - 3i$  is an eigenvalue of A.

Chan
$$\begin{array}{ll}
\text{poly} & \begin{bmatrix} 3 & -6 \\ 2 & 1 \end{bmatrix} = \det \begin{bmatrix} 3-\lambda & -6 \\ 2 & 1-\lambda \end{bmatrix} \\
&= (3-\lambda)(1-\lambda) + (\delta) & \lambda \cos^{+5} \cdot \\
&= 3-4\lambda + \lambda^{2} + (\delta) & 4 \pm \sqrt{16-4\cdot 1\cdot 13} \\
&= 3-4\lambda + \lambda^{2} + (\delta) & 2
\end{array}$$

$$= \lambda^{2} + 4\lambda + 13 \\
&= \lambda^{2} + 4\lambda + 13 \\
&= 4 \pm 6i = 2 \pm 3i$$

(b) The corresponding eigenvector to 
$$\lambda$$
 is  $\begin{bmatrix} 1-3i\\2 \end{bmatrix}$ . Use this to write  $A=PCP^{-1}$ , where  $C$  is of the form  $\begin{bmatrix} a & -b\\b & a \end{bmatrix}$ 

$$P = \begin{bmatrix} Re \vec{v} & Ta \vec{v} \\ Ta \vec{v} \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ 2 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} \alpha & -b \\ b & \alpha \end{bmatrix} \quad \text{where } \lambda = \alpha - bi \quad , \text{ so } \alpha = 2, \lambda = 3$$

$$A = \begin{bmatrix} 1 & -3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 2 & 0 \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} 1 & -3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{6} \end{bmatrix}$$

4. Let 
$$\mathbf{y} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$
 and  $\mathbf{v} = \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}$ . Express  $\mathbf{y} = \mathbf{x} + \mathbf{z}$ , where  $\mathbf{x}$  is a multiple of  $\mathbf{v}$  and  $\mathbf{z}$  is orthogonal to  $\mathbf{v}$ .

$$\vec{\mathbf{x}} = \begin{bmatrix} \mathbf{y} & \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -2 \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2/3 \\ -4/3 \end{bmatrix} = \begin{bmatrix} 2/3 \\ -4/3 \end{bmatrix}$$

$$= \begin{bmatrix} 2/3 \\ 1+9+4 \end{bmatrix} \begin{bmatrix} 1/3 \\ 2/3 \end{bmatrix} = \begin{bmatrix} 2/3 \\ 1/3 \end{bmatrix} \begin{bmatrix} 1/2 \\ 2/3 \end{bmatrix} = \begin{bmatrix} 2/3 \\ 4/3 \end{bmatrix}$$

$$\vec{Z} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} - \begin{bmatrix} 2/3 \\ -4/3 \\ 4/3 \end{bmatrix} = \begin{bmatrix} 7/3 \\ 7/3 \\ 5/3 \end{bmatrix}$$
Clark 
$$\begin{bmatrix} 4/3 \\ 7/3 \\ 5/3 \end{bmatrix} \circ \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 - 14 + 107 \\ 3 - 3 + 37 \end{bmatrix} = 0$$

5. Prove that if the distance from  $\mathbf{u}$  to  $\mathbf{v}$  is the same as the distance from  $\mathbf{u}$  to  $-\mathbf{v}$ , then  $\mathbf{u}$  and  $\mathbf{v}$  are orthogonal.

$$\frac{d(\vec{u},\vec{v}) = d(\vec{u},-\vec{v})}{||\vec{u}-\vec{v}||^2 = ||\vec{u}+\vec{v}||^2} 
||\vec{u}-\vec{v}||^2 = ||\vec{u}+\vec{v}||^2 
(\vec{u}-\vec{v}) \cdot (\vec{u}-\vec{v}) = (\vec{u}+\vec{v}) \cdot (\vec{u}+\vec{v})} 
= \vec{u} \cdot \vec{v} - 2\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v} + \vec{$$