## Math 358-Week Four Homework

Due October 2 (Friday) in class

1. Exercises 2.1 2, 3; Exercises 2.2 2,4,5,7 (for real this time!)
2. How many ternary sequences (sequences of 0 's, 1 's, and 2's) of length $n$ have at least one 0 , at least one 1 , and at least one 2 .
3. How many four-digit numbers (including those with leading 0 's) are there in which no digit appears exactly twice?
4. Given a set of six letters with three of each of two kinds of letter ( $\{a, a, b, b, c, c\}$ ), how many arrangements are there in which no pair of identical letters are adjacent. How many 'essentially different' arrangements are there (for example, $a b a c b c$ is not essentially different from bcbaca, but is different from $c a b c a b$ ).
5. Generalize the previous exercise to a set of $2 n$ letters with two of each of $n$ kinds of letter. Generate the sequence of solutions for the first few $n$ and research it on the OEIS.

## Math 358-Week Four Homework

Due October 2 (Friday) in class

1. Exercises 2.1 2, 3; Exercises 2.2 2,4,5,7 (for real this time!)
2. How many ternary sequences (sequences of 0 's, 1's, and 2's) of length $n$ have at least one 0 , at least one 1 , and at least one 2 .
3. How many four-digit numbers (including those with leading 0's) are there in which no digit appears exactly twice?
4. Given a set of six letters with three of each of two kinds of letter ( $\{a, a, b, b, c, c\}$ ), how many arrangements are there in which no pair of identical letters are adjacent. How many 'essentially different' arrangements are there (for example, $a b a c b c$ is not essentially different from bcbaca, but is different from $c a b c a b$ ).
5. Generalize the previous exercise to a set of $2 n$ letters with two of each of $n$ kinds of letter. Generate the sequence of solutions for the first few $n$ and research it on the OEIS.
