Math 386, Supplemental Exercises

Due February 11, 2013, in class

- 1. For each field extension below, find $\Gamma(L:K)$
 - (a) $L = \mathbb{Q}(\alpha), K = \mathbb{Q}$, where $\alpha = \sqrt[5]{2}$
 - (b) $L = \mathbb{Q}(\alpha), K = \mathbb{Q}$, where $\alpha = \zeta_3$
 - (c) $L = \mathbb{Q}(\alpha, \beta), K = \mathbb{Q}(\alpha)$, where $\alpha = \zeta_3, \beta = \sqrt[3]{2}$.
 - (d) $L = \mathbb{Q}(\alpha), K = \mathbb{Q}$, where $\alpha = \sqrt[4]{2}$ (harder than it looks....)
- 2. Let $\alpha \in \mathbb{C}$ be algebraic over \mathbb{Q} and let $r \in \mathbb{Q}$. Prove that α^r is algebraic over \mathbb{Q} .
- 3. Is π algebraic over $\mathbb{Q}(\pi^3)$? Why or why not?
- 4. Suppose that E: F is an extension and that [E:F] = p, a prime. Prove that, for all $a \in E$, F(a) = F or F(a) = E.