## Math 386, Supplemental Exercises

Due February 11, 2013, in class

1. For each field extension below, find $\Gamma(L: K)$
(a) $L=\mathbb{Q}(\alpha), K=\mathbb{Q}$, where $\alpha=\sqrt[5]{2}$
(b) $L=\mathbb{Q}(\alpha), K=\mathbb{Q}$, where $\alpha=\zeta_{3}$
(c) $L=\mathbb{Q}(\alpha, \beta), K=\mathbb{Q}(\alpha)$, where $\alpha=\zeta_{3}, \beta=\sqrt[3]{2}$.
(d) $L=\mathbb{Q}(\alpha), K=\mathbb{Q}$, where $\alpha=\sqrt[4]{2}$ (harder than it looks....)
2. Let $\alpha \in \mathbb{C}$ be algebraic over $\mathbb{Q}$ and let $r \in \mathbb{Q}$. Prove that $\alpha^{r}$ is algebraic over $\mathbb{Q}$.
3. Is $\pi$ algebraic over $\mathbb{Q}\left(\pi^{3}\right)$ ? Why or why not?
4. Suppose that $E: F$ is an extension and that $[E: F]=p$, a prime. Prove that, for all $a \in E$, $F(a)=F$ or $F(a)=E$.
