Euler's Formula

Something every Math Major should know

Barry Balof ${ }^{1}$

${ }^{1}$ Whitman College
Walla Walla, WA
Math 497
January 18, 2013

The Most Beautiful Formula...

We are asked to verify Euler's Formula

$$
e^{i \pi}+1=0
$$

Some Series

Recall the following series expansions of transcendental functions from Calc 2

- $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\ldots$
$-\cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots$
- $\sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots$

Calculating $e^{i \theta}$

Our formula for e^{x} holds for all values of x, real and imaginary. Thus...

Expanding with powers of i, we get the following

Calculating $e^{i \theta}$

Our formula for e^{x} holds for all values of x, real and imaginary. Thus...

$$
e^{i \theta}=1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+
$$

Expanding with powers of i, we get the following

Calculating $e^{i \theta}$

Our formula for e^{x} holds for all values of x, real and imaginary. Thus...

$$
e^{i \theta}=1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+
$$

Expanding with powers of i, we get the following

Calculating $e^{i \theta}$

Our formula for e^{x} holds for all values of x, real and imaginary. Thus...

$$
e^{i \theta}=1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+
$$

Expanding with powers of i, we get the following

$$
e^{i \theta}=1+i \theta-\frac{(\theta)^{2}}{2!}-i \frac{(\theta)^{3}}{3!}+\frac{(\theta)^{4}}{4!}+
$$

The Different Parts

We break our expansion down into its real and imaginary parts...

$$
\operatorname{Re}\left(e^{i \theta}\right)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-=\cos (\theta)
$$

The Different Parts

We break our expansion down into its real and imaginary parts...

$$
\begin{aligned}
& \operatorname{Re}\left(e^{i \theta}\right)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-=\cos (\theta) \\
& \operatorname{Im}\left(e^{i \theta}\right)=\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-=\sin (\theta)
\end{aligned}
$$

Thus, we conclude

The Different Parts

We break our expansion down into its real and imaginary parts...

$$
\begin{aligned}
& \operatorname{Re}\left(e^{i \theta}\right)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-=\cos (\theta) \\
& \operatorname{Im}\left(e^{i \theta}\right)=\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-=\sin (\theta)
\end{aligned}
$$

Thus, we conclude

$$
e^{i \theta}=\cos (\theta)+i \sin (\theta)
$$

Deriving the Formula

From the trigonometric representation of $e^{i \theta}$, it's a straightforward evaluation that yields Euler's Formula...

Deriving the Formula

From the trigonometric representation of $e^{i \theta}$, it's a straightforward evaluation that yields Euler's Formula...

$$
e^{i \pi}=\cos \pi+i \sin \pi=-1+i \cdot 0
$$

Deriving the Formula

From the trigonometric representation of $e^{i \theta}$, it's a straightforward evaluation that yields Euler's Formula...

$$
\begin{gathered}
e^{i \pi}=\cos \pi+i \sin \pi=-1+i \cdot 0 \\
e^{i \pi}+1=0
\end{gathered}
$$

