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We have performed a test of local realism using entangled photons produced by spontaneous
parametric downconversion. This experimental test is based on an idea originally proposed by
Hardy for a test of local realism without inequalities, although our experiment actually measures an
inequality �as any experiment must�. We find a more-than-70 standard deviation violation of the
predictions of local realism. The experimental effort required for this test is essentially the same as
that required for a test of a Bell inequality. However, this test is based on concepts that are easier
to understand and more compelling than those behind the original Bell inequality. © 2006 American
Association of Physics Teachers.
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I. INTRODUCTION

Over the years numerous papers by Mermin and others
have explored with ever increasing clarity and simplicity
some of the mysteries of quantum mechanics.1–5 By mystery
we mean the tendency of quantum mechanics to predict out-
comes that contradict our deeply ingrained classical notions.
In particular, quantum mechanics violates local realism. Lo-
cality here means that the results of measurements in one
location should not affect the results of measurements in an-
other location if there is no causal relationship between the
measurements. Reality refers to the idea that we should be
able to assign definite values to physically measurable quan-
tities prior to their actual measurement. By saying quantum
mechanics violates local realism, we mean that we are forced
to give up either locality or reality to explain quantum me-
chanical predictions.

The idea that quantum mechanics violates local realism
dates to the ideas of Einstein, Podolsky, and Rosen �EPR�.6 It
was Bell who showed that it is possible to perform an ex-
periment to prove that quantum mechanics violates local
realism.7 He did so by deriving an inequality that must be
satisfied by any local realistic system and then showing that
quantum mechanics could violate this inequality. Since Bell’s
original work other similar inequalities have been derived,
which are often collectively referred to as Bell inequalities.
There have been numerous experimental tests of Bell in-
equalities, with nearly all of them confirming the predictions
of quantum mechanics �see Ref. 8 and the references
therein�. Dehlinger and Mitchell performed a test of a Bell
inequality in an undergraduate laboratory,8 and we and others
have implemented this experiment in undergraduate labora-
tories since then.

Greenberger, Horne, and Zeilinger went beyond Bell in-
equalities by showing that it is, in principle, possible to per-
form an “all or nothing” test of local realism.2,9 This result
was an advance because the argument by Bell was essen-
tially statistical in nature—classical physics predicts certain
results occur with one probability, while quantum mechanics
predicts the same results occur with a different probability. In
an all-or-nothing test, classical mechanics predicts a certain
outcome will always happen, while quantum mechanics pre-
dicts it never happens. All-or-nothing tests are significantly
more difficult experimentally, because they usually involve

the use of three entangled particles in contrast to the two
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particles needed for tests of Bell inequalities. Nevertheless,
the experiment has been performed and agrees with quantum
mechanical predictions.10

In 1993 Hardy derived what Mermin has referred to as
“the best version of Bell’s theorem.”11,12 Hardy conceived of
a system of two particles in which local realism predicts a
certain outcome never occurs, while quantum mechanics pre-
dicts that it sometimes occurs. In principle, the observation
of a single occurrence of this event is enough to demonstrate
that quantum mechanics violates local realism. In practice, a
real experiment with an imperfect apparatus must measure an
inequality; we discuss this point further in the following.
Experiments testing local realism using Hardy’s ideas have
been performed and agree with quantum mechanics.13–15

Because both experiments involve similar inequalities, it
might be thought that there is no advantage to performing
Hardy’s test of local realism over Bell’s test. However, the
explanation of Hardy’s test is much easier to understand.
Although it might take an hour or more to explain Bell’s
theorem to students in a junior/senior quantum mechanics
course �and longer to derive it�, it takes about half an hour to
explain Hardy’s ideas to a nontechnical audience. This dif-
ference is a compelling reason to implement Hardy’s test of
local realism in an undergraduate laboratory.

II. THEORY

A. The basic idea

There are many discussions of Hardy’s ideas aimed at un-
dergraduate and nontechnical audiences. Each uses a differ-
ent analogy between the real experimental apparatus and
other objects that are more familiar to the reader. The sce-
narios involve objects such as flashing colored lights,3 Dutch
doors,16 cakes,5 and socks.17 We have our own scenario in-
volving observations made by two students sitting in differ-
ent classrooms. Because these simplified explanations are
available elsewhere,3,5,16 the explanation we present here in-
volves the measurement of the polarization of two photons,
which is what we actually do in our experiment.

Imagine a source that produces pairs of photons that travel
in different directions—one goes to Alice and the other goes
to Bob, as shown in Fig. 1. For simplicity we will assume
that the photons come at regular intervals, and that Alice and
Bob can measure them with 100% efficiency. Alice’s photon

passes through a linear polarizer and then on to a detector;
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she randomly orients her polarizer axis along direction�A1 or
�A2. If Alice measures a photon at her detector, then she
knows it was polarized parallel to the polarizer axis �for ex-
ample, along �A1�. Bob has an identical polarizer and detec-
tor that he uses to perform the same measurement on his
photon. The angles that Bob randomly orients his polarizer
along are �B1 and �B2. Alice and Bob make completely inde-
pendent measurements and do not communicate during the
measurement procedure. Once all the measurements have
been performed, they get together to compare their data.

In principle, it could be arranged to make it impossible for
Alice’s and Bob’s measurements to influence each other by
ensuring that the time interval between Alice’s and Bob’s
measurements is smaller than the time it would take for light
to travel between Alice and Bob �that is, the measurements
are separated by a spacelike interval�. If this condition is
satisfied, we say that Alice and Bob have established strict
locality conditions; Alice’s and Bob’s measurements are de-
termined solely by the interaction of their own particles with
their own local detection apparatus.18 There may still be cor-
relations between the measurements made by Alice and Bob;
however, these correlations must be determined when the
photons are created at the source �for example, both photons
always have the same polarization� and not influenced by
measurements performed far away. This lack of influence is
essentially the reality assumption—that it makes sense to
talk about a photon as having a definite polarization after it
leaves the source, but before it is measured.

When Alice and Bob compare their data, they are inter-
ested in the probabilities that they will observe certain polar-
izations. They are interested in the joint probability
P��Ai ,�Bj� that Alice will measure her photon to have polar-
ization �Ai and Bob will measure his photon to have polar-
ization �Bj. They are also interested in conditional probabili-
ties of the form P��Bj ��Ai�, which is the probability that Bob
will measure �Bj given that Alice measured �Ai. After calcu-
lating various probabilities from their data, Alice and Bob
notice four interesting features, which we will refer to as
observations 1–4.

1. Alice sets her polarizer along �A1 and Bob sets his polar-
izer along �B1. In this case they will sometimes both de-
tect photons. In fact, with these polarizer settings the pho-
tons are found to have this combination of polarizations
about 9% of the time; that is, P��A1 ,�B1��0.09.

2. Alice sets her polarizer along �A1 and Bob sets his polar-
izer along �B2. If Alice detects a photon, then Bob always
detects a photon; that is, P��B2 ��A1�=1.

3. Alice sets her polarizer along �A2 and Bob sets his polar-
izer along �B1. If Bob detects a photon, then Alice always
detects a photon; that is, P��A2 ��B1�=1.

By logical inference, we can use these three observations to

Fig. 1. The gedanken experiment.
make a prediction about what must happen if Alice sets her
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polarizer along �A2 and Bob sets his polarizer along �B2.
Let’s start by imagining only those situations in which Alice
measures her photon to be polarized along �A1 and Bob mea-
sures his to be polarized along �B1 �by observation 1 we
know that this situation is allowed�. Suppose that at the last
moment Bob changes his mind and instead orients his polar-
izer along �B2. What will he find? Because we know Alice
will measure a photon polarized along �A1, by observation 2
we know that Bob must measure his photon to be polarized
along �B2. What if, instead, Bob leaves his polarizer oriented
along �B1, but Alice changes her mind and orients her polar-
izer along �A2? Because Bob will measure his photon to be
along �B1, by observation 3 we know that Alice must mea-
sure her photon to be polarized along �A2. What happens if
both Alice and Bob change their minds and measure along
�A2 and �B2? By using similar reasoning, we conclude that
Alice and Bob must measure their photons to be polarized
along �A2 and �B2.

Observations 2 and 3 require that every time Alice and
Bob would have measured photons along �A1 and �B1, they
will instead measure them to be polarized along �A2 and �B2
if they choose to orient their polarizers differently. Thus with
the reasonable assumption that the properties of the photons
produced at the source are independent of the detector
settings,19 Alice and Bob must measure photons polarized
along �A2 and �B2 at least as often as they measure photons
polarized along �A1 and �B1.

P��A2,�B2� � P��A1,�B1� . �1�

By observation 1 they must measure photons polarized along
�A2 and �B2 at least �9% of the time that they have their
polarizers oriented along those axes: P��A2 ,�B2�� �0.09.

What do Alice and Bob observe when they set their polar-
izers along �A2 and �B2? This question brings us to observa-
tion 4;

4. If Alice sets her polarizer along �A2 and Bob sets his
polarizer along �B2, they never find their photons to be
simultaneously polarized in these directions: P��A2 ,�B2�
=0.

Clearly, the experimental evidence of observation 4 vio-
lates P��A2 ,�B2�� �0.09. Alice and Bob have been per-
forming an experiment on a quantum mechanical system,
and their results contradict the classical reasoning that leads
to this inequality. This evidence means that at least one of
our assumptions is incorrect. Because the only assumptions
we made are those of locality and reality, we find that quan-
tum mechanics violates local realism.20 Of course, we must
also show that quantum mechanics allows for a source of
photon pairs that satisfy observations 1–4 � see Appendix A�.

We have stated that Hardy’s test of local realism does not
require an inequality. If we first perform an experiment that
verifies observations 2, 3, and 4, then Eq. �1� forces us to
conclude that P��A1 ,�B1�=0. Suppose Alice and Bob set
their polarizers along �A1 and �B1. If they ever measure si-
multaneous counts, this conclusion is false, and quantum me-
chanics is found to violate local realism. In this sense a
single measurement, and not an inequality, is needed to vio-

late local realism.
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B. The experimental inequality

The argument in Sec. II A hinges on the fact that certain
events happen 100% of the time. What if these events are
observed to happen only 98% of the time? Does the entire
argument fall apart? We now show that it does not, but it
does need to be modified.

Let us reexamine observation 2, which says that if Alice’s
photon is found to be polarized along �A1, then Bob’s must
be found to be polarized along �B2. If this statement is true,
then it will never be the case that Alice finds her photon
polarized along �A1 and Bob finds his photon polarized per-
pendicular to �B2. Similar reasoning can be applied to obser-
vation 3, and we can rewrite these observations in the form

2�. If Alice sets her polarizer along �A1 and Bob sets his
polarizer along �B2

� =�B2±90°, Alice and Bob never detect
simultaneous photons and P��A1 ,�B2

� �=0.
3�. If Alice sets her polarizer along �A2

� and Bob sets his
polarizer along �B1, Alice and Bob never detect simulta-
neous photons and P��A2

� ,�B1�=0.

Now the argument goes that observations 2� and 3� imply
Eq. �1�, which is violated by observations 1 and 4. An ex-
perimental test of local realism involves measuring four joint
probabilities and verifying that they satisfy observations 1,
2�, 3�, and 4.

Verifying observations 2� and 3� involves showing that the
measured probabilities are equal to zero. Such a verification
is impossible experimentally, because a measured probability
can never be shown to be equal to zero for two reasons. One
is that experimental imperfections �for example, dark counts,
accidental coincidences� invariably lead to nonzero prob-
abilities. Indeed, a zero measurement should be viewed with
extreme skepticism—it would likely be due to the fact that
the detectors are not working!21 The second reason is that
just because we make a million measurements and do not see
something, does not mean we won’t see it on the million and
first measurement. In other words, if we perform N measure-
ments, the best that we can say is that the probability is less
than �1/N. Because of these experimental realities, it is nec-
essary to recast our test of local realism in a form that allows
for nonzero probabilities.

Lets suppose that 2% of the time Alice and Bob detect
simultaneous photons when Alice sets her polarizer along �A1
and Bob sets his polarizer along �B2

� : P��A1 ,�B2
� �=0.02. Thus,

it is reasonable to expect that 2% of the time we would
obtain the incorrect answer when we try to infer what Alice
and Bob will measure with their polarizers set to �A2 and �B2.
Assume the worst possible scenario in which we obtain the
wrong answer 2% of the time. We can no longer say that
Alice and Bob will measure �A2 and �B2 at least as often as
they measure �A1 and �B1; it is possible that they will mea-
sure �A2 and �B2 2% less often than they will measure �A1
and �B1. We must subtract the probability that we are incor-
rect, P��A1 ,�B2

� �, from the probability P��A1 ,�B1�. If the
probability P��A2

� ,�B1� is nonzero, it must be subtracted as
well. The predictions of local realism are no longer given by
Eq. �1�, but instead become

P��A2,�B2� � P��A1,�B1� − P��A1,�B2
� � − P��A2

� ,�B1� . �2�

Equation �2� is a form of the Bell-Clauser-Horne
3,15
inequality, which must be satisfied by any system that is
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local and realistic, but which quantum mechanics can vio-
late. We have not derived this inequality, but have merely
motivated it; the reader is referred elsewhere for a proof.3

Equation �2� is the general form of the Bell-Clause-Horne
inequality, which involves four independent angles. In our
experiment the angles of interest are the angles � and � and
their negatives. By assigning �A1=�, �B1=−�, �A2=−�, and
�B2=�, we can rewrite Eq. �2� as

P�− �,�� � P��,− �� − P��,��� − P�− ��,− �� . �3�

It is convenient to define the quantity H by

H = P��,− �� − P��,��� − P�− ��,− �� − P�− �,�� . �4�

The Bell-Clauser-Horne inequality allows us to divide the
behavior of H into two regions: H�0 is consistent with local
realism, while H�0 is inconsistent with local realism. The
fact that H�0 is allowed by quantum mechanics is shown in
Appendix A.

III. EXPERIMENTS

Our experiment uses polarization entangled photons pro-
duced in spontaneous parametric downconversion. In this
process a single photon at one frequency, called the pump
photon, is converted into two photons of lower frequency in
a nonlinear crystal. The lower frequency photons are referred
to as the signal and the idler. Energy conservation requires
that the energies of the signal and idler photons add up to the
energy of the pump photon; in practice this requirement
means that the frequencies of the signal and idler photons are
approximately half of the frequency �twice the wavelength�
of the pump photon.

An experiment to perform Hardy’s test of local realism15

is nearly identical to a test of Bell’s inequality.8,22 The appa-
ratus required is the same; the only differences when per-
forming Hardy’s test are �a� the downconversion source is
tuned slightly differently to produce photons in a different
quantum state; �b� the polarizers in front of the detectors are
set to different angles; �c� the data is analyzed to compute the
quantity H, defined in Eq. �4�, rather than a different quantity
that is used in tests of Bell’s inequality.

A. Experimental apparatus

Our experimental apparatus is depicted in Fig. 2, and a list
of the equipment we use is provided in Appendix B. The
source consists of a pair of 0.5-mm-thick BBO crystals, each
cut for type-I downconversion �the polarization of the signal
and idler photons is perpendicular to the polarization of the
pump�. They are stacked back to back, with their crystal axes
oriented at 90° with respect to each other.8,15,22 The first crys-
tal converts vertically polarized pump photons into horizon-
tally polarized signal and idler, while the second crystal con-
verts horizontally polarized pump photons into vertically
polarized signal and idler. The pump laser is a 50-mW,
405-nm laser diode, so the wavelength of the signal and idler
photons is centered about 810 nm. The half-wave plate, � /2,
and the quartz plate in front of the downconversion crystals
are used to adjust the pump polarization and the relative
phase between the horizontal and vertical polarizations. The
signal and idler photons each make an angle of approxi-
mately 3° from the direction of the pump. The signal photons
travel to Alice’s detection apparatus, and the idler photons

travel to Bob’s.
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The state we wish to produce has the form

��� = a�H�A�H�B + bei	�V�A�V�B, �5�

where H refers to a horizontally polarized photon, V refers to
a vertically polarized photon, a and b are real numbers, 	 is
the relative phase of the two terms, and normalization de-
mands that a2+b2=1. The source thus produces pairs of hori-
zontally polarized photons with probability a2 and pairs of
vertically polarized photons with probability b2. The relative
magnitudes of a and b are adjusted by rotating the half-wave
plate that controls the pump polarization. The relative phase
is controlled by tilting the quartz plate, and we wish to adjust
this phase to be 	=0.8 As described in Appendix A, when
performing Hardy’s test, a near optimal violation of local
realism can be accomplished using either of the states

	 	

Fig. 2. The experimental arrangement. Here � /2 denotes a half-wave plate,
QP denotes the quartz plate, DC denotes the downconversion crystals,
SPCM denotes a single photon counting module, and PBS denotes a polar-
izing beam splitter.
��1� = 0.8�H�A�H�B + 0.2�V�A�V�B, �6a�

Bj Ai
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��2� = 	0.2�H�A�H�B + 	0.8�V�A�V�B. �6b�

For ��1� the analysis angles used are �
55° and �
71°,
and for ��2� the analysis angles are �
35° and �
19°.

At each detection station the photons first pass through a
half-wave plate �we use zero-order broadband wave plates�
and then through a broadband polarizing beam splitter. Ro-
tating the wave plate in front of the beam splitter is equiva-
lent to rotating the polarization axis of the beam splitter.
Light emerging from the beam splitter is collected by a lens
and focused into a multimode fiber that directs the light to a
single photon counting module �SPCM�. The SPCMs have
RG780 filters in front of them, which pass the downcon-
verted light but block scattered pump photons.

We used two different detection schemes in our experi-
ments: a two-detector scheme and a four-detector scheme.
The four-detector scheme is shown in Fig. 2; in the two-
detector scheme we use only the detectors monitoring the
transmission ports of the beam splitters. The unit that we use
to count the photons contains four independent SPCMs pack-
aged together. Each SPCM outputs a 5-V electrical pulse for
every detected photon. In the four-detector scheme we mea-
sure coincidences between four combinations of detectors.
For example, NAB is the number of coincidence counts be-
tween detectors A and B in a given time interval. We also
measure the coincidence counts NAB�, NA�B, and NA�B�. In the
two-detector scheme we measure only NAB. Coincidence
counting is done using four time-to-amplitude converter/
single-channel-analyzer �TAC/SCA� units. We use a 3.5-ns
coincidence window. A PCI-card, eight-channel counter in a
computer does the actual counting. Four channels measure
the coincidence counts, while the other four channels mea-
sure the singles counts on each detector: NA, NA�, NB, and
NB�.

Further information about our experimental apparatus, es-
pecially details about coincidence counting, can be found in
Refs. 23 and 24. For further details about the two-crystal
source, the reader is referred to Refs. 8, 15, and 22.

B. Measuring probabilities

Given the measured count rates, we need to calculate the
probabilities that determine H using Eq. �4�. In the four-
detector scheme the probabilities are given by the ratio of the
measured coincidence counts on the transmitted beams to the

total number of coincidences,
P��Ai,�Bj� =
NAB��Ai,�Bj�

NAB��Ai,�Bj� + NAB���Ai,�Bj� + NA�B��Ai,�Bj� + NA�B���Ai,�Bj�
. �7�

For a given choice of angles we can simultaneously measure all of the needed coincidence counts to determine P��Ai ,�Bj�
when using the four-detector scheme. Because we need to measure four probabilities to determine H, we need to make
measurements at four different combinations of wave-plate angles.

In the two-detector scheme we only measure one coincidence count rate at a time. We need four coincidence rates to
determine the probability �corresponding to the angles of interest as well as the perpendicular combinations of angles�, so we
must use four wave-plate settings for each probability. The measured probability is given by

P��Ai,�Bj� =
NAB��Ai,�Bj�

NAB��Ai,�Bj� + NAB��Ai,�
� � + NAB���,�Bj� + NAB���,�� �

. �8�

Ai Bj
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Determining H with the two-detector scheme requires mea-
surements to be preformed at 16 different combinations of
wave-plate angles. Thus obtaining results from the two-
detector scheme that are comparable to those from the four-
detector scheme requires a data acquisition time that is four
times longer.

C. Tuning the state

The key to the experiment is aligning the source to pro-
duce a state that closely approximates one of the states given
in Eq. �6�. We start by adjusting the pump polarization to be
horizontal, so that it pumps only one of the two crystals, and
the downconversion is vertically polarized. We align detec-
tors A and B for maximum coincidence counts, as described
in Ref. 23.

We then rotate the pump polarization to vertical to pro-
duce horizontally polarized downconversion from the other
crystal. We use the fact that when the downconversion crys-
tals are tilted, they are very sensitive to tilt in one direction,
but fairly insensitive to tilt in the opposite direction. With the
pump vertically polarized we adjust only the vertical tilt of
the crystal pair to maximize the production of horizontally
polarized photon pairs; this adjustment does not significantly
affect the production of vertically polarized pairs from the
other crystal. We now insert iris diaphragms to define the
paths of the signal and idler beams, insert the wave plates
and polarizers in front of the detectors, and align detectors A�
and B�. These detectors are coarsely aligned by shining laser
light backward through the coupling fibers, as described in
Ref. 23.

To tune the state we set the detector wave plates so that
NAB registers HH coincidences, and NA�B� registers VV coin-
cidences. We adjust the wave plate in the pump beam so that
the ratio of these coincidences is 4:1 to produce state ��1�
�1:4 to produce state ��2��. If we use only two detectors, we
must adjust the detector wave plates to sequentially record
the HH and VV coincidences to adjust their ratio. We then set
the detector wave plates to measure NAB�−� ,�� and adjust
the tilt of the quartz plate in the pump beam �hence adjusting
	 in Eq. �5�� to minimize these coincidences. The advantage
of using four detectors when doing this procedure is that we
can monitor P�−� ,�� in real time while performing this ad-
justment. Ideally we wish this probability to be less than 1%,
but at this point in the alignment we are willing to settle for
a few percent. Now the state should be fairly well tuned, and
we should be able to verify that P�� ,��� and P�−�� ,−��
are both on the order of a few percent. Fine-tuning is done by
iteratively adjusting the wave plate and the quartz plate in
the pump beam, as well as varying the measurement angles
over a few degrees, all with the goal of keeping the measured
values of P�−� ,��, P�� ,���, and P�−�� ,−�� as low as
possible while increasing H. As described in Appendix A, it
is possible to adjust the measurement angles to increase H
with little measurable affect on P�−� ,��, P�� ,���, and
P�−�� ,−��. Note that the angles are not independent; if we
change � to help minimize P�−� ,��, for example, we must
make consistent changes when measuring P�� ,��� and

�
P�−� ,−��.
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IV. RESULTS

When taking data we set the detector wave plates to the
desired angles and then collect coincidence data for a given
integration time. We collect 10 measurements of coincidence
data before changing the wave-plate settings and repeating
the process. These 10 measurements at each combination of
angles allow us to compute 10 values for H and hence deter-
mine the mean and standard deviation of H. The total coin-
cidence rate between the signal and idler beams is typically
400 counts per second, and we use integration times ranging
from 10 to 60 s. The total time for an experiment using the
four-detector scheme and a 10-s integration time is about 7
min.

Our best results are obtained with the four-detector
scheme. We find H=0.1178±0.0016, where the quoted error
is the standard deviation. This result violates the inequality
H�0 set by local realism by 73 standard deviations. This
experiment used a 45-s integration time and the individual
probabilities were P�� ,−��=0.147, P�−� ,��=0.012,
P�� ,���=0.008, and P�−�� ,−��=0.009. In a more typical
run with a 20-s integration time we find P�� ,−��=0.153,
P�−� ,��=0.021, P�� ,���=0.012, P�−�� ,−��=0.013, and
H=0.1081±0.0033, for a 32 standard deviation violation of
local realism. These two values for H are not the same be-
cause they were obtained on different days, with slightly
different tunings of the quantum state.

These results were obtained using state ��2�, but we have
obtained essentially the same results using state ��1�. Our
best results with the two-detector scheme violated local real-
ism by 18 standard deviations. This reduction in the amount
of violation was primarily because the two-detector scheme
takes four times as long to acquire the data, so we tended to
use shorter integration times.

Our technique of obtaining 10 measurements of P�−� ,��,
then 10 measurements of P�−� ,��, etc., makes it possible
for a slow drift in the apparatus to affect the statistics of H.
In practice, we find that a slow drift is not a significant issue
in our experiment. We tested for drift by performing our
experiment 11 times over a 3.5-h interval, without changing
the alignment or measurement angles. All of the measured
values of H were the same to within the error estimate. This
observation is not surprising; the experiment does not require
interferometric precision, so we do not expect it to be par-
ticularly sensitive to drift. The alternative data collection
technique would be to rotate the wave plates after every mea-
surement, which would greatly increase the data acquisition
time.

The results we have given were obtained by two under-
graduate students as part of a summer project. Since then we
have implemented this experiment in an undergraduate
teaching laboratory. Four groups of students each spent two
three-hour lab periods working on the experiment. The de-
tector alignment was done before the students came to the
lab. After familiarizing themselves with the apparatus, the
students’ primary task was to explore how tuning the state
�using the pump wave plate and the quartz plate� and adjust-
ing � and � affected the measurements. Each group explored
the behavior of both states ��1� and ��2�, and all groups were
able to obtain at least a 10 standard deviation violation of

local realism.
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V. CONCLUSIONS

There are now several experiments on fundamental as-
pects of quantum mechanics using individual photons that
have been performed in undergraduate laboratories. In addi-
tion to Hardy’s test of local realism, there are tests of a Bell
inequality,8 showing the existence of photons,23 single pho-
ton interference,24,25 and the quantum eraser.26,27 These ex-
periments have been reproduced in several colleges and uni-
versities. The technology to perform them continues to
improve and implementing them in an undergraduate labora-
tory continues to become easier.

We have experience with all of these experiments in our
laboratory and can offer some comments on their relative
difficulty. We have found that the experiment that demon-
strates the existence of photons is the most straightforward.
This relative ease is because it uses a simple source �a single
type-I downconversion crystal�, has very high count rates,
and is straightforward to align. The next most difficult ex-
periments are those that add one more level of complexity:
either a polarization entangled source or an interferometer.
Hardy’s test of local realism and the test of a Bell inequality
both require a polarization entangled source, and single pho-
ton interference requires aligning an interferometer. The
quantum eraser is the most difficult because it involves using
both a polarization entangled source and an interferometer.
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APPENDIX A: QUANTUM STATE

Consider the quantum state

��� = a�H�A�H�B + b�V�A�V�B, �A1�

where H refers to a horizontally polarized photon, V refers to
a vertically polarized photon, a and b are real numbers, and
normalization demands that a2+b2=1. If the light emerging
from the source is in this state, then the probability that Alice
will measure her photon to be polarized along �Ai and Bob
will measure his photon to be polarized along �Bj is given by

P��Ai,�Bj� = ��A��Ai�B��Bj������2. �A2�

Equation �A2� can be evaluated by noting that the state of a
photon polarized at an angle � with respect to the horizontal
can be written as

��� = cos ��H� + sin ��V� , �A3�

so

�A��Ai�B��Bj����� = �A�H�cos �Ai + A�V�sin �Ai�


�B�H�cos �Bj + B�V�sin �Bj�


 �a�H�A�H�B + b�V�A�V�B� . �A4�

After simplifying Eq. �A4� we find

P��Ai,�Bj� = �a cos �Ai cos �Bj + b sin �Ai sin �Bj�2. �A5�

We are interested in finding a state and a set of angles that
satisfy observations 1, 2�, 3�, and 4 and for which H�0,

with H defined in Eq. �4�. It is easily verified from Eq. �A5�
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that if a=	0.8, b=	0.2, �=55°, and �=71°, the probabili-
ties in H are P�� ,−���0.09 and P�−� ,��� P�� ,���
= P�−�� ,−���0,28 yielding H=0.09�0, which violates lo-
cal realism. The same probabilities are obtained with a
=	0.2, b=	0.8, �=35°, and �=19°.

The parameters we have given yield nearly the maximum
possible violation of the inequality H�0, assuming that the
angles are constrained such that P�−� ,��= P�� ,���
= P�−�� ,−��=0.11 It is possible to obtain larger values of H
if we are willing to relax the constraint that these probabili-
ties are all equal to zero. Assume, for example, that we are
willing to allow these probabilities to be greater than zero
but less than 1%. With a=	0.8, b=	0.2, �=59°, and �
=80°, P�−� ,��, P�� ,���, and P�−�� ,−�� are all less than
1%, and P�� ,−��=0.165, yielding H=0.140. Experimen-
tally we found it extremely difficult to obtain probabilities
less than 1%, and were unable to get all three of these prob-
abilities simultaneously less than 1% �although others have
done so13–15�.

APPENDIX B: EQUIPMENT

Much of the equipment we use is the same as that de-
scribed in Refs. 8,23. However, some of the technology has
advanced, so we provide updated information here and on
our Web site.24

We use essentially the same crystals as described in Ref. 8
�two crystals glued together by the manufacturer�, except
that ours are 0.5 mm thick rather than 0.1 mm thick.29 We
have also performed this experiment with two individually
mounted crystals placed back to back, and the results ob-
tained with these crystals were almost as good as those we
have described. Because the separate crystals involve more
work to align, we recommend using crystals that are glued
together.

The laser we use is a 50-mW, 405-nm laser diode with a
circularized output beam �model IQ1C50� from Power
Technologies.30 Although this laser is only one year old,
newer technology has already replaced it. Currently Power
Technologies has 185-mW lasers available.

We use a Perkin-Elmer, four-channel, single photon count-
ing module.31 This module needs external 2, 5, and 30 V
power supplies. Because the price of this four-channel unit is
only slightly more than the price of two individual counters,
we recommend purchasing this unit, which allows one to
implement �or later upgrade to� the four-detector scheme.32

We already had motorized rotation stages �model PR50PP�
and a computer interfaced controller �model ESP300� for the
detector half-wave plates from Newport Corporation.33

These stages and controller were a luxury—they make life
easier for the experimenter, but are not necessary.
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