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Comparing measurements of g„2…
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with different coincidence detection techniques

M. Beck

Department of Physics, Whitman College, Walla Walla, Washington 99362, USA
beckmk@whitman.edu

Received June 22, 2007; revised August 28, 2007; accepted September 17, 2007;
posted October 11, 2007 (Doc. ID 84422); published November 14, 2007

I present measurements of the degree of second-order coherence g�2��0� for spontaneous parametric downcon-
version fields and discuss the differences between two-detector (unconditional) and three-detector (conditional)
measurements of g�2��0�. An emphasis is placed on comparing measurements made using time-to-amplitude
converters (TACs) to those made using a logic circuit, illustrating how the TAC measurements are adversely
influenced by dead time effects. Finally, I show how the detrimental effects of dead time when using TACs can
be mitigated by renormalizing the measurement results. © 2007 Optical Society of America

OCIS codes: 270.5290, 030.5290, 030.5260.
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. INTRODUCTION
he degree of second-order (temporal) coherence g�2����
as a long and important history in quantum optics. In-
eed, it can be argued that measurements performed by
anbury Brown and Twiss of quantities related to the de-

ree of second-order coherence are what stimulated the
reation of the modern field of quantum optics [1,2]. One
f the first experiments to observe a purely quantum-
echanical effect in an optical field was the observation of

hoton antibunching, in which the quantity of interest is
�2���� [3,4]. Since then measurements of g�2���� (and
losely related quantities) have played an important role
n quantum optics (see, for example, [5–12]).

Here I present expressions for g�2��0� in terms of experi-
entally measurable quantities, accounting for the real

xperimental imperfection of dead time effects. The spe-
ial case of �=0 is important, because g�2��0� can be used
o distinguish between classical and quantum fields; clas-
ical wave theory predicts that g�2��0��1, whereas quan-
um mechanics allows g�2��0��1. I make a distinction be-
ween two- and three-detector measurements of g�2��0�
for clarity I refer to these as g2D

�2��0� and g3D
�2��0�, respec-

ively.) In two-detector measurements the field to be mea-
ured impinges on a beam splitter, and the two output
orts are monitored with photon-counting detectors; I re-
er to this as an unconditional measurement. Three-
etector measurements are conditional, because the two
etectors monitoring the beam splitter outputs are gated
y (conditioned on) detection events at a third detector.
his third detector monitors a second field, so g3D

�2��0� de-
ends not only on the properties of the field incident on
he beam splitter but also on the correlations between
his field and the field incident on the third detector.

As will be seen below, dead time in the coincidence de-
ermination can dramatically degrade the experimental
easurements, yielding results that differ considerably

rom the usual theoretical predictions. I demonstrate two
ifferent techniques for overcoming this problem. The
0740-3224/07/122972-7/$15.00 © 2
referred method is to reduce the amount of dead time
nd hence improve the quality of the data. This is illus-
rated by comparing two different coincidence detection
echniques: one using time-to-amplitude converters
TACs), which sufferers from dead time problems, and the
ther using a logic circuit that has essentially no dead
ime. If one does not have access to coincidence detection
quipment with short dead time, I show that it is possible
o renormalize the data in such a way as to improve the
greement between the measurements and the theoreti-
al predictions.

. THEORY
ne typically measures g�2���� of a beam of light by send-

ng the beam onto a beam splitter and measuring the cor-
elations between the reflected and transmitted output
ntensities IR�t� and IT�t�; see Fig. 1. Classically g�2���� of
he incident beam is given by the normalized correlations
f the output beams [13]:

g�2���� =
�IT�t + ��IR�t��

�IT�t + ����IR�t��
, �1�

here the brackets indicate a time average, which may be
eplaced by an ensemble average for stationary fields. For
lassical waves the intensities of the transmitted and re-
ected beams are related to the input intensity by IT�t�
TII�t� and IR�t�=RII�t�, where T and R are the intensity

ransmission and reflection coefficients of the beam split-
er. Because of this fact, g�2��t� can be rewritten in terms
f the incident intensity as

g�2���� =
�II�t + ��II�t��

�II�t + ����II�t��
. �2�

ote that this expression is independent of the splitting
atio of the beam splitter (although in practice one cannot
et too close to a 100/0 or 0/100 splitting ratio, because
007 Optical Society of America
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hen g�2��t� becomes the ratio of two very small numbers,
nd the expression is not well behaved for experimental
ata.) For �=0 Eq. (2) becomes

g�2��0� =
�II

2�t��

�II�t��2 . �3�

he Cauchy–Schwartz inequality applied to this expres-
ion yields the result that for classical waves g�2��0��1.

Equation (1) is a classical expression; the quantum ex-
ression has the intensities replaced by their correspond-
ng operators [13,14]:

g�2���� =
�: ÎT�t + ��ÎR�t�:�

�ÎT�t + ����ÎR�t��
, �4�

here the colons indicate that the operators inside must
e normally ordered and time ordered. If light in an
-photon Fock state is incident on the beam splitter, it is
traightforward to show that g�2��0�= �n−1� /n. For a Fock
tate it is always true that g�2��0��1, which clearly vio-
ates the classical wave inequality. The maximum viola-
ion of this inequality occurs for a single-photon Fock
tate, for which g�2��0�=0.

. Two-Detector Measurements of g„2…
„0…

n an experiment one does not directly measure the inten-
ity, so it is necessary to relate the expressions for g�2��0�
iven above to experimentally measured quantities. It
an be shown that when g�2��0� is measured using photo-
lectric detection, it is written in terms of the probabili-
ies of individual photodetections as

g2D
�2��0� =

PTR

PTPR
, �5�

here PT�PR� is the probability of a detection at detector
�R� in a short time interval �t, and PTR is the joint prob-
bility of making detections at both T and R in the same
ime interval [14]. The subscript 2D on g�2��0� in Eq. (5)
mphasizes that this expression is valid for measure-
ents performed with two detectors.
Equation (5) is obtained using either the semiclassical

r the fully quantum mechanical theory of
hotodetection—the difference between the two being
ow the probabilities are calculated. It remains the case
hat for classical light g2D

�2��0��1, whereas nonclassical
ight allows g�2��0��1.

ig. 1. (Color online) Coincidence measurement. The incident
I� beam is split into transmitted �T� and reflected �R� beams at a
0/50 beamsplitter. Detections at T and R are examined to see
hether they occur simultaneously.
2D
Experimentally, how does one measure g2D
�2��0�? To an-

wer this I must explain how the probabilities in Eq. (5)
re determined from measured count rates. For example,
he probability of a detection at detector T within �t is
imply given by the average rate of detections at T, RT,
ultiplied by �t. The average rate is just the total num-

er of detections NT divided by the total counting time
T. The probabilities for R detections and TR coinci-
ences are given similarly:

PT = RT�t = �NT

�T��t, PR = RR�t = �NR

�T��t,

PTR = RTR�t = �NTR

�T ��t. �6�

hese equations are valid as long as the detection prob-
bilities are much less than 1. Substituting these prob-
bilities into Eq. (5) yields

g2D
�2��0� =

NTR

NTNR
��T

�t � . �7�

his same expression can be derived more rigorously us-
ng results found in [14].

It was mentioned above that g�2��0� is independent of
he splitting ratio of the beam splitter, but it is also inde-
endent of the detection efficiencies of the detectors [14].
his independence on detection efficiency arises because

he number of coincidence detections in the numerator of
q. (7) is related to the intensities by the product of the
etection efficiencies at T and R, but the denominator has
he same dependence; the detection efficiencies thus can-
el out. This is one reason why photon antibunching was
ne of the first intrinsically quantum field effects to be
bserved—it could be seen with low efficiency detectors,
hereas low efficiency detection frequently masks quan-

um effects.

. Three-Detector Measurements of g„2…
„0…

s described above, g2D
�2��0� is measured for a single beam

ncident on a beam splitter and using two detectors, la-
eled T and R. However, experiments are frequently per-
ormed in which a second source beam is incident on a
hird detector that is used as a gate (and correspondingly
abeled G), as shown in Fig. 2 [5,15]. Figure 2 depicts our
xperimental arrangement (described in more detail be-
ow); for the purposes of the discussion here, the salient
oint is that two beams emerge from the source (here a
ownconversion crystal, labeled DC). One beam is de-
ected at G, while the other goes to a beam splitter and is
etected at T and R. Since the T and R detections are con-
itioned on a detection at G, it is reasonable to expect the
robabilities in Eq. (5) to be further conditioned upon a
ate detection, and hence this expression becomes

g3D
�2��0� =

PGTR

PGTPGR
. �8�

ere PGTR is the probability of obtaining a threefold coin-
idence between detectors T, R, and G in the time interval
t. The subscript 3D in Eq. (8) emphasizes that this ex-
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ression is valid for three-detector measurements of
�2��0�. I refer to such measurements as being conditional
ecause of the conditioning provided by the gate detector.
Because in three-detector measurements the gate de-

ections can be used as the number of trials, it is possible
o normalize the probabilities in Eq. (8) differently from
hose in Eq. (5). The probabilities are given by the num-
er of coincidences divided by the number of trials, which
s equal to the number of gate detections:

PGTR =
NGTR

NG
, PGT =

NGT

NG
, PGR =

NGR

NG
, �9�

here, given a specified time window, NGT �NGR� is the
umber of simultaneous photocounts at detector T �R�
nd detector G, NGTR is the number of threefold coinci-
ences, and NG is the number of singles counts at detector
. Note that with these expressions it is not necessary to
ake specific reference to the coincidence window or total

ounting time. Using Eq. (9), the experimentally deter-
ined g3D

�2��0� can be rewritten as

g3D
�2��0� =

NGTRNG

NGTNGR
. �10�

gain, this quantity is independent of the detection effi-
iencies, because when relating the number of detected
hotons to the intensities both the numerator and de-
ominator depend linearly on the efficiencies at T and R
nd quadratically on the efficiency at G (see also [5]).
In order to avoid confusion, I will comment here on the

ifferences between two- and three-detector measure-
ents. The two-detector measurement g2D

�2��0� most closely
epresents a measurement of the “true” definition of
�2��0� of a light beam. The three-detector measurement

ig. 2. (Color online) Experimental apparatus. Major compo-
ents include the pump laser; the downconversion crystal (DC);
he half-wave plate �� /2�; the polarizing beam splitter (PBS);
he single-photon counting modules (SPCMs); and gating,
ransmission-side, and reflection-side collection optics (G, T, and
). Optical fibers direct the light from G, T, and R to their cor-

esponding SPCMs. The coincidence electronics and counting oc-
ur after the SPCMs.
3D
�2��0� represents a conditional g�2��0�, where the condi-
ioning is done using measurements on a second
eam—in some sense one may think of Eqs. (8)–(10) as
efining what is meant by this conditional measurement
f g�2��0�. Conditioning is useful in cases where one has
wo beams that are correlated in intensity, and one
ishes to measure g�2��0� of one beam conditioned on the
resence of a photon in the second beam. An important
xample is the case of spontaneous downconversion,
here detection of a photon in the idler beam projects the

ignal beam into a single-photon state (now often referred
o as heralded single-photon generation) [16].

My definition of g3D
�2��0� is the same as that of the � pa-

ameter defined by Grangier et al.: g3D
�2��0�=� [5,17]. Using

he semiclassical model of detection, it was proved by
rangier et al. that g3D

�2��0��1 for a classical source, so a
easurement of g3D

�2��0��1 is at odds with the classical
ave theory of light. For photon pairs produced from a

ascade decay in calcium, Grangier et al. were able to
easure g3D

�2��0�=0.18±0.06 [5]. This was an important ex-
eriment demonstrating that conditional measurements
ould produce nonclassical light.

Because two- and three-detector measurements of
�2��0� both yield the same inequality for classical fields:

2D
�2��0��1 and g3D

�2��0��1, it’s easiest to simply say that for
lassical fields g�2��0��1.

. DEAD TIME EFFECTS
ead time refers to the fact that once a photon is de-

ected, certain instruments require time to reset them-
elves. During this dead time further counts cannot be
rocessed. The single-photon detection rates in the ex-
eriments described here are on the order of 106 cps
counts per second) or less. The dead time of the detectors
s 50 ns, so significantly larger count rates would be
eeded for detector dead time to have a significant effect.
However, the dead time in the TACs frequently used to
easure coincidences is on the order of 1 �s, so this can

nfluence the results. For a periodic train of photons, it is
ossible to operate a TAC at rates approaching 106 cps.
owever, if the photons are produced at random times,

ven if the average time between photons is more than
�s, there is some probability that photons are separated

y less than this and coincidences will be missed.
These missed coincidences will effect measurements of

2D
�2��0� and g3D

�2��0�. For example, consider Eq. (7). It was
tated above that detector inefficiencies affect the nu-
erator and denominator of Eq. (7) in the same way so as

o cancel out and have no net effect. However, dead-time
ffects in the coincidence measurement reduce the mea-
ured coincidences in the numerator of Eq. (7) but have no
ffect on the singles detections in the denominator. Thus,
f dead-time effects in coincidence determination are im-
ortant, we expect experimental measurements of g2D

�2��0�
o yield smaller values than we would otherwise expect.

Fortunately TACs give the experimenter a way to mea-
ure the effects of dead time. Each TAC has an output la-
eled VALID START (VS). Every time a START pulse suc-
essfully initiates a conversion event, there is a VS output
ulse. For example, suppose that one START pulse ini-
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iates a conversion event; for this conversion event the
AC outputs a VS. If a second START pulse arrives
ithin the dead time, it cannot initiate a conversion
vent, and no VS pulse is output. Since this second
TART pulse does not initiate a conversion event, it can-
ot contribute to the measured coincidences. This is what

eads to missed coincidences using TACs.
As dead time becomes more important, the number of

Ss becomes a smaller fraction of the number of STARTs.
his can be visualized, for example, by plotting the rate of
S pulses due to the gate RG vs on the TAC measuring GT

oincidences versus the rate of START pulses RG, as
hown in Fig. 3. For a periodic train of STARTs (circles in
ig. 3) the VSs track the STARTs up to about 9�105 cps.
bove this rate the pulses are closer together than the
ead time, so only every other pulse is measured. For ran-
om downconversion events (triangles in Fig. 3), however,
he number of VSs are less than the number of STARTs,
nd the discrepancy increases as the count rate increases.
t a rate of 105 cps the discrepancy is not large (only
bout 10%), but it rapidly increases at higher rates. How-
ver, there is a way to correct the measurements to ac-
ount for this error. The key to doing this is to realize that
hen measuring g2D

�2��0� or g3D
�2��0�, only START pulses that

rigger a VS can possibly contribute to a measured coin-
idence.

First consider the effects on g2D
�2��0�. When measuring

he coincidences NTR, it is the T detector that serves as
he START pulse. Only detections at T that trigger a VS
an possibly contribute to the NTR coincidences, so the
roper normalization in Eq. (7) should involve NT vs, not

T. This means the corrected expression for g2D
�2��0� is

g2D
�2��0� =

NTR

NT vsNR
��T

�t � . �11�

R is not replaced by NR vs because the R detector is con-
ected to the STOP input of the TAC. Once the START
ircuitry of the TAC has been initiated, any detection at R
an trigger the STOP and hence determine a coincidence.

Now consider the effects on g3D
�2��0�. For these measure-

ents three coincidences are needed, so three TACs are
sed. The denominators used to calculate the coincidence
robabilities in Eq. (9) should be replaced by the corre-
ponding number of VSs. The correct expressions are then

ig. 3. (Color online) Rate of VALID STARTs on the gate RG vs is
lotted versus STARTs RG. Circles are for a periodic train of
TARTs, while triangles are for a random stream of STARTs

rom the downconversion source.
PGT =
NGT

NG vs
, PGR =

NGR

NG vs
, �12�

here NG vs is the number of VSs from the TAC measur-
ng GT coincidences. Since the dead times and count rates
n the GT and GR TACs are nearly the same, and it is the

detector that acts as the gate, then the number of valid
tarts for these two TACs are essentially the same (this
as been verified experimentally), and one needs only to
easure the VSs from one of the TACs.
Notice that the expression for the threefold probability

as not been modified. This is because in the experiments
t is measured slightly differently. As described in [15],
he output of the G detector does not go into the START
ut rather into the START GATE. The T detector is
lugged into the START, and a conversion event is initi-
ted in this TAC when there is a coincidence between the
and T detectors. This coincidence rate is over 1 order of
agnitude less than the rate at which dead-time effects

re important (this has also been experimentally veri-
ed.) Thus, dead time has essentially no effect in measur-

ng threefold coincidences, and the expression for the
hreefold probability is still properly determined using

G, which initiates everything via the START GATE.
aking all of this into account, the expression for g3D

�2��0�
hat properly accounts for dead-time effects in the TACs
s

g3D
�2��0� =

�NG vs�2NGTR

NGNGTNGR
. �13�

The adverse effects of dead time in uncorrected mea-
urements of g2D

�2��0� and g3D
�2��0� [Eqs. (7) and (10)] are

emonstrated in Section 4, which presents experimental
ata. It is also shown that Eqs. (11) and (13) provide a
easonable means to correct for dead-time effects. This is
one by comparing corrected measurements performed
sing TACs to measurements performed using a logic cir-
uit, which has essentially no dead time. When using the
ogic circuit Eqs. (7) and (10) accurately determine

2D
�2��0� and g3D

�2��0�, even at very high count rates.

. EXPERIMENTS
n these experiments I used single-photon counting mod-
les (SPCMs) based on Geiger mode avalanche photo-
iodes as the detectors. Coincidences were determined in
ne of two ways: using a combination of TACs and single
hannel analyzers (SCAs) or using a logic circuit. The
ogic circuit used pulse shaping to shorten the �25 ns out-
ut pulses from the SPCMs to �10 ns, and then perform-
ng a logical AND operation on the shortened pulses to de-
ermine a coincidence. Details of the circuit will be
ublished elsewhere (see also [18].) Counting was done
sing a plugin card in a computer, which simultaneously
ounted on up to eight channels. I used a combination of a
alf-wave plate and a polarizing beam splitter (PBS) in
lace of an ordinary beam splitter; this allowed me to ad-
ust the splitting ratio to ensure that the count rates on
he T and R detectors were roughly equal. A more detailed
escription of the experimental procedures can be found
n [15,18].
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For measurements of g2D
�2��0� it is necessary to measure

he coincidence time window �t. This is done using a
ource of uncorrelated photons. Light from a 405 nm laser
iode is shone on a piece of white paper (placed directly
ehind the downconversion crystal in Fig. 2.) Scattered
ight passes through the beam splitter and is detected at
etectors T and R. Although the SPCMs have RG780 fil-
ers that block wavelengths shorter than 780 nm, the la-
er is intense enough to generate enough scattered pho-
ons to perform this calibration. Additionally, the laser
lso produces some florescence above 780 nm, which con-
ributes to the calibration measurement. The assumption
hen performing this calibration is that any coincidence
etections between T and R are uncorrelated and are due
o random chance [i.e., that g2D

�2��0�=1.] To calibrate the
ogic circuit Eq. (7) is used, and the temporal resolution
as found to be �t=6.57±0.04 ns. The coincidence win-
ow for the TAC experiments was calibrated using Eq.
11) and was adjusted to be close to that of the logic cir-
uit, �t=6.83±0.04 ns. These results are consistent with
oincidence resolution measurements obtained using a
elay generator.

. Two-Detector Measurements
have measured g2D

�2��0� for a single beam (the signal
eam) of a spontaneous parametric downconversion
ource. The experimental arrangement is shown in Fig. 2.
he source was a 3-mm-long crystal of beta-barium bo-
ate pumped by a 180 mW, 405 nm laser diode. The ge-
metry was noncollinear, type I downconversion. Since in
wo-detector measurements there is no gating on the
resence of a photon in the idler beam, the field striking
he beam splitter is not prepared in a single-photon state
ut should instead behave like a classical, thermal source
or which one expects g2D

�2��0�=2. However, if one examines
he full temporal behavior of g�2���� for a thermal source,
ne finds that it has a constant background of g�2����=1,
ut there is a “bump” that rises to g�2����=2 at �=0
13,14,19]. The temporal width of this bump is on the or-
er of the coherence time of the source. If the temporal
esolution of the coincidence measurement is much larger
han this coherence time, then the bump cannot be re-
olved, so one expects to measure g2D

�2��0��1 [13,14]; this
s certainly the case in this experiment, since the coher-
nce time is less than 100 fs, and the coincidence resolu-
ion is 	1 ns.

In Fig. 4(a) I show plots of g2D
�2��0� versus the average

ount rate measured at detector T, RT; the data was ob-
ained using a TAC. Each point represents the average of
0 measurements with �T=30 s. Results are shown for
alculations of g2D

�2��0� using Eqs. (7) and (11). It is seen
hat calculating g2D

�2��0� using Eq. (11), which corrects for
ead-time errors, yields the expected result of g2D

�2��0�=1
or all count rates. Equation (7), however, erroneously in-
icates that g2D

�2��0� decreases with increasing singles
ount rate, because the TR coincidences are being under-
ounted owing to dead time effects.

In Fig. 4(b) I compare measurements obtained using
he TAC [and Eq. (11)] and the logic circuit [and Eq. (7)].
he error bars come from two sources. The first is simply
he statistical error of the measurements (the standard
eviation of 10 measurements with �T=30 s); this error
ominates at the lower count rates. The other source of
rror is the uncertainty in the coincidence time resolution
hat is used to calculate g2D

�2��0�; this error dominates at
he higher count rates. It is seen that all of the data is
onsistent with g2D

�2��0�=1, indicating that (i) the logic cir-
uit does not suffer from dead time errors, and (ii) Eq. (11)
easonably corrects for dead-time errors when using a
AC.

. Three-Detector Measurements
s described above in Section 2, detection of a photon in

he idler beam by the gate detector projects the signal
eam into a single-photon state. This is an inherently
uantum-mechanical state and allows the observation of

3D
�2��0��1. This effect has been seen before (see, for ex-
mple, [5,15]), and the purpose here is to determine how
his observation is affected by dead time.

In Fig. 5 I show measured values of g3D
�2��0� as functions

f the singles count rate on the gate detector RG; each
oint represents the average of 10 measurements with
T=30 s. The statistical error of each point is smaller

han the size of the corresponding marker. At the lowest
ount rates all of the measurements yield g3D

�2��0��0.035,
ut in each situation the values of g3D

�2��0� increase with

G. The values for g3D
�2��0� obtained using the TAC and Eq.

10) grow the most rapidly and eventually exceed one; the
rimary reason for this increase in g3D

�2��0� is dead-time ef-
ects, and hence these values are erroneous.

ig. 4. (Color online) The degree of second-order coherence mea-
ured with two detectors g2D

�2��0� is plotted versus the singles rate
n detector T, RT. The sources of error are described in the text.
n (a) data taken using the TAC is compared for analysis using
qs. (7) and (11). In (b) data acquired using the TAC and the cor-
ected expression Eq. (11) is compared to data acquired using the
ogic circuit and the uncorrected expression Eq. (7).
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In Fig. 5 the values for g3D
�2��0� obtained using the logic

ircuit and those obtained using the TAC and Eq. (13) in-
rease owing to increasing accidental coincidence rates.
n [15] it was shown that the expected measured value for

3D
�2��0� when accidental coincidences are accounted for is

g3D
�2��0� = RG�t3D� RR

RGR
+

RT

RGT
� . �14�

he primary assumption made in deriving this expression
as that the accidental threefold detections come prima-

ily from a true twofold coincidence, and then an acciden-
al detection at the third detector within a time window of
t3D (this time window need not be the same as the time
indow for the two detector measurements—although it
ill ordinarily be on the same scale). This time interval

annot be directly measured using uncorrelated photons
since the assumption is that there is a valid twofold co-
ncidence, and uncorrelated photons do not produce such

coincidence); one way to determine it is to fit the mea-
ured g3D

�2��0� data using Eq. (14) with �t3D as the fit pa-
ameter. The lines in Fig. 5 show plots of Eq. (14) for two
ifferent values of �t3D: �t3D=4.4 ns, appropriate for the
ogic circuit, and �t3D=7.3 ns, appropriate for the TAC
nd Eq. (11). It is seen that with the correct value for
t3D, Eq. (14) accurately determines g3D

�2��0� from the ex-
ected accidental threefold coincidences.
I note that in [15] Eq. (10) was used to calculate

3D
�2��0�, instead of the corrected expression in Eq. (13).
hat effect did this have on the values of g3D

�2��0� reported
here? The values for g3D

�2��0� in Eqs. (10) and (13) differ by
factor of �NG vs /NG�2, which for the count rates in [15] is
bout 0.8. Thus the corrected values for g3D

�2��0� would be
maller than reported in [15] by this factor.

. CONCLUSIONS
hese experiments yield several insights. The first is that
ead-time effects in a TAC can lead to erroneous mea-
urements of g�2��0� and g�2��0�. The ideal solution to this

ig. 5. (Color online) The conditional degree of second-order co-
erence measured with three detectors g3D

�2��0� is plotted versus
he singles rate on detector G, RG. Markers represent data taken
sing the TAC and analyzed using Eqs. (10) and (13) and also
ata taken using the logic circuit. Error bars (representing the
tandard deviation of 10 measurements) are smaller than the
arkers. Lines represent the expected value of g3D

�2��0� deter-
ined using Eq. (14) for two different values of �t3D.
2D 3D
roblem is to use equipment for coincidence determina-
ion that reduces dead time. I have shown that a high-
peed logic circuit does exactly this. When using this cir-
uit it is possible to use the well-known expressions for

2D
�2��0� and g3D

�2��0� [Eqs. (7) and (10)] and still obtain accu-
ate results. Since the logic circuit operates at higher
ount rates, has comparable time resolution, and is much
ess expensive than the TACs, it is the superior instru-

ent for these measurements.
The second insight is that it is possible to mitigate dead

ime effects in such measurements by counting the
ALID STARTS from the TACs and using Eqs. (11) and

13) to calculate g2D
�2��0� and g3D

�2��0�. These corrected mea-
urements yield much better agreement between experi-
ent and theory. Thus, if measurements must be per-

ormed using TACs the renormalized expressions derived
ere will be of use to experimenters.
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