2972 J. Opt. Soc. Am. B/Vol. 24, No. 12/December 2007

M. Beck

Comparing measurements of g*(0) performed
with different coincidence detection techniques

M. Beck

Department of Physics, Whitman College, Walla Walla, Washington 99362, USA
beckmk@whitman.edu

Received June 22, 2007; revised August 28, 2007; accepted September 17, 2007;
posted October 11, 2007 (Doc. ID 84422); published November 14, 2007

I present measurements of the degree of second-order coherence g®(0) for spontaneous parametric downcon-
version fields and discuss the differences between two-detector (unconditional) and three-detector (conditional)
measurements of g®(0). An emphasis is placed on comparing measurements made using time-to-amplitude
converters (TACs) to those made using a logic circuit, illustrating how the TAC measurements are adversely
influenced by dead time effects. Finally, I show how the detrimental effects of dead time when using TACs can
be mitigated by renormalizing the measurement results. © 2007 Optical Society of America
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1. INTRODUCTION

The degree of second-order (temporal) coherence g@(7)
has a long and important history in quantum optics. In-
deed, it can be argued that measurements performed by
Hanbury Brown and Twiss of quantities related to the de-
gree of second-order coherence are what stimulated the
creation of the modern field of quantum optics [1,2]. One
of the first experiments to observe a purely quantum-
mechanical effect in an optical field was the observation of
photon antibunching, in which the quantity of interest is
g@(7) [3,4]. Since then measurements of g?(r) (and
closely related quantities) have played an important role
in quantum optics (see, for example, [5-12]).

Here I present expressions for g2(0) in terms of experi-
mentally measurable quantities, accounting for the real
experimental imperfection of dead time effects. The spe-
cial case of 7=0 is important, because g'?(0) can be used
to distinguish between classical and quantum fields; clas-
sical wave theory predicts that g'2(0)= 1, whereas quan-
tum mechanics allows g (0)<1. I make a distinction be-
tween two- and three-detector measurements of g2 (0)
(for clarity I refer to these as g(zzl),(O) and g(32[),(0), respec-
tively.) In two-detector measurements the field to be mea-
sured impinges on a beam splitter, and the two output
ports are monitored with photon-counting detectors; I re-
fer to this as an unconditional measurement. Three-
detector measurements are conditional, because the two
detectors monitoring the beam splitter outputs are gated
by (conditioned on) detection events at a third detector.
This third detector monitors a second field, so g%(O) de-
pends not only on the properties of the field incident on
the beam splitter but also on the correlations between
this field and the field incident on the third detector.

As will be seen below, dead time in the coincidence de-
termination can dramatically degrade the experimental
measurements, yielding results that differ considerably
from the usual theoretical predictions. I demonstrate two
different techniques for overcoming this problem. The
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preferred method is to reduce the amount of dead time
and hence improve the quality of the data. This is illus-
trated by comparing two different coincidence detection
techniques: one using time-to-amplitude converters
(TACs), which sufferers from dead time problems, and the
other using a logic circuit that has essentially no dead
time. If one does not have access to coincidence detection
equipment with short dead time, I show that it is possible
to renormalize the data in such a way as to improve the
agreement between the measurements and the theoreti-
cal predictions.

2. THEORY

One typically measures g@(7) of a beam of light by send-
ing the beam onto a beam splitter and measuring the cor-
relations between the reflected and transmitted output
intensities Ix(t) and I(t); see Fig. 1. Classically g?(7) of
the incident beam is given by the normalized correlations
of the output beams [13]:

(2)( ) It + Ig(t)) n
T = —7
g Iyt + D)IR(E)

where the brackets indicate a time average, which may be
replaced by an ensemble average for stationary fields. For
classical waves the intensities of the transmitted and re-
flected beams are related to the input intensity by Ip(¢)
=TI;(t) and Iz(t)=RI;(t), where T and R are the intensity
transmission and reflection coefficients of the beam split-
ter. Because of this fact, g?(t) can be rewritten in terms
of the incident intensity as
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Note that this expression is independent of the splitting
ratio of the beam splitter (although in practice one cannot
get too close to a 100/0 or 0/100 splitting ratio, because
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Fig. 1. (Color online) Coincidence measurement. The incident
(I) beam is split into transmitted (7") and reflected (R) beams at a
50/50 beamsplitter. Detections at 7" and R are examined to see
whether they occur simultaneously.

then g?(¢) becomes the ratio of two very small numbers,
and the expression is not well behaved for experimental
data.) For 7=0 Eq. (2) becomes
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The Cauchy—Schwartz inequality applied to this expres-
sion yields the result that for classical waves g®(0)=1.

Equation (1) is a classical expression; the quantum ex-
pression has the intensities replaced by their correspond-
ing operators [13,14]:

CIp + DIR@):)

- Fa— (4)
(Ir(t + 7)IR(@))

g%(n) =

where the colons indicate that the operators inside must
be normally ordered and time ordered. If light in an
n-photon Fock state is incident on the beam splitter, it is
straightforward to show that g?(0)=(n—1)/n. For a Fock
state it is always true that g®(0)<1, which clearly vio-
lates the classical wave inequality. The maximum viola-
tion of this inequality occurs for a single-photon Fock
state, for which g?(0)=0.

A. Two-Detector Measurements of g(z)(O)

In an experiment one does not directly measure the inten-
sity, so it is necessary to relate the expressions for g®(0)
given above to experimentally measured quantities. It
can be shown that when g?(0) is measured using photo-
electric detection, it is written in terms of the probabili-
ties of individual photodetections as

PTR
2)0) =
gsp(0) PTPR’

(5)

where Pp(Pg) is the probability of a detection at detector
T(R) in a short time interval A¢, and Py, is the joint prob-
ability of making detections at both 7' and R in the same
time interval [14]. The subscript 2D on g?(0) in Eq. (5)
emphasizes that this expression is valid for measure-
ments performed with two detectors.

Equation (5) is obtained using either the semiclassical
or the fully quantum mechanical theory of
photodetection—the difference between the two being
how the probabilities are calculated. It remains the case
that for classical light g(QZD)(O)Bl, whereas nonclassical
light allows ggzl;(O) <L
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Experimentally, how does one measure g(Z%(O)? To an-
swer this I must explain how the probabilities in Eq. (5)
are determined from measured count rates. For example,
the probability of a detection at detector 7" within At is
simply given by the average rate of detections at 7', Ry,
multiplied by A¢. The average rate is just the total num-
ber of detections Ny divided by the total counting time
AT. The probabilities for R detections and TR coinci-
dences are given similarly:

Np Ng
Pp=RpAt=| — |At, Pp=RpAt=|— |Ac,
T T AT R R AT
Prne Ryt = | V7% \ g (6)
TR —4'TR = AT .

These equations are valid as long as the detection prob-
abilities are much less than 1. Substituting these prob-
abilities into Eq. (5) yields

Nrr (AT

5) (7)

NpNg\ At
This same expression can be derived more rigorously us-
ing results found in [14].

It was mentioned above that g?(0) is independent of
the splitting ratio of the beam splitter, but it is also inde-
pendent of the detection efficiencies of the detectors [14].
This independence on detection efficiency arises because
the number of coincidence detections in the numerator of
Eq. (7) is related to the intensities by the product of the
detection efficiencies at T' and R, but the denominator has
the same dependence; the detection efficiencies thus can-
cel out. This is one reason why photon antibunching was
one of the first intrinsically quantum field effects to be
observed—it could be seen with low efficiency detectors,

whereas low efficiency detection frequently masks quan-
tum effects.

£5(0) =

B. Three-Detector Measurements of g(z)(O)

As described above, g(zzD)(O) is measured for a single beam
incident on a beam splitter and using two detectors, la-
beled T and R. However, experiments are frequently per-
formed in which a second source beam is incident on a
third detector that is used as a gate (and correspondingly
labeled G), as shown in Fig. 2 [5,15]. Figure 2 depicts our
experimental arrangement (described in more detail be-
low); for the purposes of the discussion here, the salient
point is that two beams emerge from the source (here a
downconversion crystal, labeled DC). One beam is de-
tected at G, while the other goes to a beam splitter and is
detected at T" and R. Since the T and R detections are con-
ditioned on a detection at G, it is reasonable to expect the
probabilities in Eq. (5) to be further conditioned upon a
gate detection, and hence this expression becomes

Perr
(2)
g3p(0) = .
PerPgr

(8)

Here Pgrg is the probability of obtaining a threefold coin-
cidence between detectors T, R, and G in the time interval
At. The subscript 3D in Eq. (8) emphasizes that this ex-
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Fig. 2. (Color online) Experimental apparatus. Major compo-
nents include the pump laser; the downconversion crystal (DC);
the half-wave plate (\/2); the polarizing beam splitter (PBS);
the single-photon counting modules (SPCMs); and gating,
transmission-side, and reflection-side collection optics (G, T, and
R). Optical fibers direct the light from G, T, and R to their cor-
responding SPCMs. The coincidence electronics and counting oc-
cur after the SPCMs.

pression is valid for three-detector measurements of
29(0). I refer to such measurements as being conditional
because of the conditioning provided by the gate detector.

Because in three-detector measurements the gate de-
tections can be used as the number of trials, it is possible
to normalize the probabilities in Eq. (8) differently from
those in Eq. (5). The probabilities are given by the num-
ber of coincidences divided by the number of trials, which
is equal to the number of gate detections:

Nerr ~ Ner Ngr

) GR = )
Ng¢ Ng¢

9)
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where, given a specified time window, Ngr (Ngg) is the
number of simultaneous photocounts at detector T' (R)
and detector G, Ngrg is the number of threefold coinci-
dences, and N is the number of singles counts at detector
G. Note that with these expressions it is not necessary to
make specific reference to the coincidence window or total
counting time. Using Eq. (9), the experimentally deter-
mined g(s%(O) can be rewritten as

NgreNg

_ (10)
NerNer

25)(0) =
Again, this quantity is independent of the detection effi-
ciencies, because when relating the number of detected
photons to the intensities both the numerator and de-
nominator depend linearly on the efficiencies at T and R
and quadratically on the efficiency at G (see also [5]).

In order to avoid confusion, I will comment here on the
differences between two- and three-detector measure-
ments. The two-detector measurement g%(O) most closely
represents a measurement of the “true” definition of
g@(0) of a light beam. The three-detector measurement
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2:2(0) represents a conditional g®(0), where the condi-

tioning is done wusing measurements on a second
beam—in some sense one may think of Egs. (8)-(10) as
defining what is meant by this conditional measurement
of g2(0). Conditioning is useful in cases where one has
two beams that are correlated in intensity, and one
wishes to measure g(2)(0) of one beam conditioned on the
presence of a photon in the second beam. An important
example is the case of spontaneous downconversion,
where detection of a photon in the idler beam projects the
signal beam into a single-photon state (now often referred
to as heralded single-photon generation) [16].

My definition of g%(O) is the same as that of the « pa-
rameter defined by Grangier et al.: g%(O) =a [5,17]. Using
the semiclassical model of detection, it was proved by
Grangier et al. that g%(O) =1 for a classical source, so a
measurement of gg%(0)<1 is at odds with the classical
wave theory of light. For photon pairs produced from a
cascade decay in calcium, Grangier et al. were able to
measure g(321%(0)=0.1810.06 [5]. This was an important ex-
periment demonstrating that conditional measurements
could produce nonclassical light.

Because two- and three-detector measurements of
g@(0) both yield the same inequality for classical fields:
g(gzl%(O) =1 and g(321%(0) =1, it’s easiest to simply say that for
classical fields g?(0)=1.

3. DEAD TIME EFFECTS

Dead time refers to the fact that once a photon is de-
tected, certain instruments require time to reset them-
selves. During this dead time further counts cannot be
processed. The single-photon detection rates in the ex-
periments described here are on the order of 108 cps
(counts per second) or less. The dead time of the detectors
is 50 ns, so significantly larger count rates would be
needed for detector dead time to have a significant effect.

However, the dead time in the TACs frequently used to
measure coincidences is on the order of 1 us, so this can
influence the results. For a periodic train of photons, it is
possible to operate a TAC at rates approaching 10° cps.
However, if the photons are produced at random times,
even if the average time between photons is more than
1 us, there is some probability that photons are separated
by less than this and coincidences will be missed.

These missed coincidences will effect measurements of
g(zzl;(O) and g%(O). For example, consider Eq. (7). It was
stated above that detector inefficiencies affect the nu-
merator and denominator of Eq. (7) in the same way so as
to cancel out and have no net effect. However, dead-time
effects in the coincidence measurement reduce the mea-
sured coincidences in the numerator of Eq. (7) but have no
effect on the singles detections in the denominator. Thus,
if dead-time effects in coincidence determination are im-
portant, we expect experimental measurements of g%(O)
to yield smaller values than we would otherwise expect.

Fortunately TACs give the experimenter a way to mea-
sure the effects of dead time. Each TAC has an output la-
beled VALID START (VS). Every time a START pulse suc-
cessfully initiates a conversion event, there is a VS output
pulse. For example, suppose that one START pulse ini-
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tiates a conversion event; for this conversion event the
TAC outputs a VS. If a second START pulse arrives
within the dead time, it cannot initiate a conversion
event, and no VS pulse is output. Since this second
START pulse does not initiate a conversion event, it can-
not contribute to the measured coincidences. This is what
leads to missed coincidences using TACs.

As dead time becomes more important, the number of
VSs becomes a smaller fraction of the number of STARTS.
This can be visualized, for example, by plotting the rate of
VS pulses due to the gate R ,, on the TAC measuring GT
coincidences versus the rate of START pulses Rg, as
shown in Fig. 3. For a periodic train of STARTS (circles in
Fig. 3) the VSs track the STARTS up to about 9 X 10° cps.
Above this rate the pulses are closer together than the
dead time, so only every other pulse is measured. For ran-
dom downconversion events (triangles in Fig. 3), however,
the number of VSs are less than the number of STARTS,
and the discrepancy increases as the count rate increases.
At a rate of 10° cps the discrepancy is not large (only
about 10%), but it rapidly increases at higher rates. How-
ever, there is a way to correct the measurements to ac-
count for this error. The key to doing this is to realize that
when measuring g%(O) or g(SZI%(O), only START pulses that
trigger a VS can possibly contribute to a measured coin-
cidence.

First consider the effects on g(zzl;(O). When measuring
the coincidences Nyg, it is the T' detector that serves as
the START pulse. Only detections at 7' that trigger a VS
can possibly contribute to the Npr coincidences, so the
proper normalization in Eq. (7) should involve Ny ., not
Nyp. This means the corrected expression for g%(O) is

Npp (AT
(2) _ R
gsp(0) =N, szR( Ar ) (11

Np, is not replaced by Ny ,, because the R detector is con-
nected to the STOP input of the TAC. Once the START
circuitry of the TAC has been initiated, any detection at R
can trigger the STOP and hence determine a coincidence.

Now consider the effects on g(32[),(0). For these measure-
ments three coincidences are needed, so three TACs are
used. The denominators used to calculate the coincidence
probabilities in Eq. (9) should be replaced by the corre-
sponding number of VSs. The correct expressions are then
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Fig. 3. (Color online) Rate of VALID STARTS on the gate R , is
plotted versus STARTs Rg. Circles are for a periodic train of
STARTSs, while triangles are for a random stream of STARTSs
from the downconversion source.
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NGT NGR
PGT=N_’ Pgr=——, (12)
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where Ng ,, is the number of VSs from the TAC measur-
ing GT coincidences. Since the dead times and count rates
in the GT and GR TACs are nearly the same, and it is the
G detector that acts as the gate, then the number of valid
starts for these two TACs are essentially the same (this
has been verified experimentally), and one needs only to
measure the VSs from one of the TACs.

Notice that the expression for the threefold probability
has not been modified. This is because in the experiments
it is measured slightly differently. As described in [15],
the output of the G detector does not go into the START
but rather into the START GATE. The T detector is
plugged into the START, and a conversion event is initi-
ated in this TAC when there is a coincidence between the
G and T detectors. This coincidence rate is over 1 order of
magnitude less than the rate at which dead-time effects
are important (this has also been experimentally veri-
fied.) Thus, dead time has essentially no effect in measur-
ing threefold coincidences, and the expression for the
threefold probability is still properly determined using
Ng, which initiates everything via the START GATE.
Taking all of this into account, the expression for ggzD)(O)
that properly accounts for dead-time effects in the TACs
is

@ (Ng v9)*Nerr
g3D(0) = - (13)
NeNgrNgr
The adverse effects of dead time in uncorrected mea-

surements of g52(0) and gi2(0) [Egs. (7) and (10)] are

demonstrated in Section 4, which presents experimental
data. It is also shown that Egs. (11) and (13) provide a
reasonable means to correct for dead-time effects. This is
done by comparing corrected measurements performed
using TACs to measurements performed using a logic cir-
cuit, which has essentially no dead time. When using the
logic circuit Eqs. (7) and (10) accurately determine
g(zzl%(O) and g(321;(0), even at very high count rates.

4. EXPERIMENTS

In these experiments I used single-photon counting mod-
ules (SPCMs) based on Geiger mode avalanche photo-
diodes as the detectors. Coincidences were determined in
one of two ways: using a combination of TACs and single
channel analyzers (SCAs) or using a logic circuit. The
logic circuit used pulse shaping to shorten the ~25 ns out-
put pulses from the SPCMs to ~10 ns, and then perform-
ing a logical AND operation on the shortened pulses to de-
termine a coincidence. Details of the circuit will be
published elsewhere (see also [18].) Counting was done
using a plugin card in a computer, which simultaneously
counted on up to eight channels. I used a combination of a
half-wave plate and a polarizing beam splitter (PBS) in
place of an ordinary beam splitter; this allowed me to ad-
just the splitting ratio to ensure that the count rates on
the T and R detectors were roughly equal. A more detailed
description of the experimental procedures can be found
in [15,18].
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For measurements of ggzD)(O) it is necessary to measure
the coincidence time window A¢. This is done using a
source of uncorrelated photons. Light from a 405 nm laser
diode is shone on a piece of white paper (placed directly
behind the downconversion crystal in Fig. 2.) Scattered
light passes through the beam splitter and is detected at
detectors 7' and R. Although the SPCMs have RG780 fil-
ters that block wavelengths shorter than 780 nm, the la-
ser is intense enough to generate enough scattered pho-
tons to perform this calibration. Additionally, the laser
also produces some florescence above 780 nm, which con-
tributes to the calibration measurement. The assumption
when performing this calibration is that any coincidence
detections between 7" and R are uncorrelated and are due
to random chance [i.e., that g%(O):l.] To calibrate the
logic circuit Eq. (7) is used, and the temporal resolution
was found to be A¢=6.57+0.04 ns. The coincidence win-
dow for the TAC experiments was calibrated using Eq.
(11) and was adjusted to be close to that of the logic cir-
cuit, At=6.83+0.04 ns. These results are consistent with
coincidence resolution measurements obtained using a
delay generator.

A. Two-Detector Measurements

I have measured g(QZD)(O) for a single beam (the signal
beam) of a spontaneous parametric downconversion
source. The experimental arrangement is shown in Fig. 2.
The source was a 3-mm-long crystal of beta-barium bo-
rate pumped by a 180 mW, 405 nm laser diode. The ge-
ometry was noncollinear, type I downconversion. Since in
two-detector measurements there is no gating on the
presence of a photon in the idler beam, the field striking
the beam splitter is not prepared in a single-photon state
but should instead behave like a classical, thermal source
for which one expects g%(O) =2. However, if one examines
the full temporal behavior of g®(7) for a thermal source,
one finds that it has a constant background of g?(7)=1,
but there is a “bump” that rises to g® (D=2 at 7=0
[13,14,19]. The temporal width of this bump is on the or-
der of the coherence time of the source. If the temporal
resolution of the coincidence measurement is much larger
than this coherence time, then the bump cannot be re-
solved, so one expects to measure g%(O)E 1 [13,14]; this
is certainly the case in this experiment, since the coher-
ence time is less than 100 fs, and the coincidence resolu-
tion is >1 ns.

In Fig. 4(a) I show plots of g(zzl;(O) versus the average
count rate measured at detector T, Ry; the data was ob-
tained using a TAC. Each point represents the average of
10 measurements with AT=30 s. Results are shown for
calculations of g%(O) using Eqgs. (7) and (11). It is seen
that calculating g%(O) using Eq. (11), which corrects for
dead-time errors, yields the expected result of g%(O):l
for all count rates. Equation (7), however, erroneously in-
dicates that g(zzl;(O) decreases with increasing singles
count rate, because the TR coincidences are being under-
counted owing to dead time effects.

In Fig. 4(b) I compare measurements obtained using
the TAC [and Eq. (11)] and the logic circuit [and Eq. (7)].

The error bars come from two sources. The first is simply
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Fig. 4. (Color online) The degree of second-order coherence mea-

sured with two detectors g(Zzl%(O) is plotted versus the singles rate

on detector T', Ry. The sources of error are described in the text.
In (a) data taken using the TAC is compared for analysis using
Egs. (7) and (11). In (b) data acquired using the TAC and the cor-
rected expression Eq. (11) is compared to data acquired using the
logic circuit and the uncorrected expression Eq. (7).

the statistical error of the measurements (the standard
deviation of 10 measurements with A7'=30 s); this error
dominates at the lower count rates. The other source of
error is the uncertainty in the coincidence time resolution
that is used to calculate g%(O); this error dominates at
the higher count rates. It is seen that all of the data is
consistent with g(zzl;(O) =1, indicating that (i) the logic cir-
cuit does not suffer from dead time errors, and (ii) Eq. (11)
reasonably corrects for dead-time errors when using a

TAC.

B. Three-Detector Measurements

As described above in Section 2, detection of a photon in
the idler beam by the gate detector projects the signal
beam into a single-photon state. This is an inherently
quantum-mechanical state and allows the observation of
g(321;(0)<1. This effect has been seen before (see, for ex-
ample, [5,15]), and the purpose here is to determine how
this observation is affected by dead time.

In Fig. 5 I show measured values of g(321;(0) as functions
of the singles count rate on the gate detector Rg; each
point represents the average of 10 measurements with
AT=30s. The statistical error of each point is smaller
than the size of the corresponding marker. At the lowest
count rates all of the measurements yield g%(o) <0.035,
but in each situation the values of ggzl%(O) increase with
Rg. The values for g(321%(0) obtained using the TAC and Eq.
(10) grow the most rapidly and eventually exceed one; the
primary reason for this increase in g%(O) is dead-time ef-
fects, and hence these values are erroneous.
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Fig. 5. (Color online) The conditional degree of second-order co-
herence measured with three detectors g%(o) is plotted versus
the singles rate on detector G, Rs. Markers represent data taken
using the TAC and analyzed using Eqgs. (10) and (13) and also
data taken using the logic circuit. Error bars (representing the
standard deviation of 10 measurements) are smaller than the

markers. Lines represent the expected value of ggzl%(O) deter-
mined using Eq. (14) for two different values of Azsp.

In Fig. 5 the values for g(32D)(0) obtained using the logic
circuit and those obtained using the TAC and Eq. (13) in-
crease owing to increasing accidental coincidence rates.
In [15] it was shown that the expected measured value for
£:2(0) when accidental coincidences are accounted for is

Rr  Rrp
$(0)=RgAtsp| — +—=—|. 14
8sp(0) G 3D<RGR RGT) (14)

The primary assumption made in deriving this expression
was that the accidental threefold detections come prima-
rily from a true twofold coincidence, and then an acciden-
tal detection at the third detector within a time window of
Atsp (this time window need not be the same as the time
window for the two detector measurements—although it
will ordinarily be on the same scale). This time interval
cannot be directly measured using uncorrelated photons
(since the assumption is that there is a valid twofold co-
incidence, and uncorrelated photons do not produce such
a coincidence); one way to determine it is to fit the mea-
sured g%(O) data using Eq. (14) with A¢3p as the fit pa-
rameter. The lines in Fig. 5 show plots of Eq. (14) for two
different values of At3p: At3p=4.4 ns, appropriate for the
logic circuit, and A¢3p=7.3 ns, appropriate for the TAC
and Eq. (11). It is seen that with the correct value for
Atsp, Eq. (14) accurately determines g%(O) from the ex-
pected accidental threefold coincidences.

I note that in [15] Eq. (10) was used to calculate
g%(O), instead of the corrected expression in Eq. (13).
What effect did this have on the values of gi(0) reported
there? The values for g%(O) in Egs. (10) and (13) differ by
a factor of (Ng ,s/N¢)2, which for the count rates in [15] is
about 0.8. Thus the corrected values for g(325(0) would be
smaller than reported in [15] by this factor.

5. CONCLUSIONS

These experiments yield several insights. The first is that

dead-time effects in a TAC can lead to erroneous mea-

surements of g%(O) and g(gzl;(O). The ideal solution to this
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problem is to use equipment for coincidence determina-
tion that reduces dead time. I have shown that a high-
speed logic circuit does exactly this. When using this cir-
cuit it is possible to use the well-known expressions for
252(0) and g$2(0) [Egs. (7) and (10)] and still obtain accu-
rate results. Since the logic circuit operates at higher
count rates, has comparable time resolution, and is much
less expensive than the TACs, it is the superior instru-
ment for these measurements.

The second insight is that it is possible to mitigate dead
time effects in such measurements by counting the

VALID STARTS from the TACs and using Eqgs. (11) and

(13) to calculate g(ZQI;(O) and g(32D)(0). These corrected mea-

surements yield much better agreement between experi-
ment and theory. Thus, if measurements must be per-
formed using TACs the renormalized expressions derived
here will be of use to experimenters.
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